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Abstract

Background: The complement component (3b/4b) receptor 1 gene (CR1) gene has been proved to affect the
susceptibility of Alzheimer’s disease (AD) in different ethnic and districts groups. However, the effect of CR1 genetic
variants on amyloid β (Aβ) metabolism of AD human is still unclear. Hence, the aim of this study was to investigate
genetic influences of CR1 gene on Aβ metabolism.

Methods: All data of AD patients and normal controls (NC) were obtained from alzheimer’s disease neuroimaging
initiative database (ADNI) database. In order to assess the effect of each single nucleotide polymorphism (SNP) of
CR1 on Aβ metabolism, the PLINK software was used to conduct the quality control procedures to enroll
appropriate SNPs. Moreover, the correlation between CR1 genotypes and Aβ metabolism in all participants were
estimated with multiple linear regression models.

Results: After quality control procedures, a total of 329 samples and 83 SNPs were enrolled in our study. Moreover,
our results identified five SNPs (rs10494884, rs11118322, rs1323721, rs17259045 and rs41308433), which were linked
to Aβ accumulation in brain. In further analyses, rs17259045 was found to decrease Aβ accumulation among AD
patients. Additionally, our study revealed the genetic variants in rs12567945 could increase CSF Aβ42 in NC
population.

Conclusions: Our study had revealed several novel SNPs in CR1 genes which might be involved in the progression
of AD via regulating Aβ accumulation. These findings will provide a new basis for the diagnosis and treatment AD.
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Highlights

1. We found that five SNPs were linked to Aβ
accumulation in brain.

2. The rs17259045 decreased Aβ accumulation among
AD patients.

3. The rs12567945 could increase CSF Aβ42 in NC
population.

Background
Alzheimer’s disease (AD) has been regarded as a neu-
rodegenerative disease of the elderly, which has
accounted for 47 million people worldwide with num-
bers predicted to rise double by 2030 and triple by
2050 [1]. As one of the most common dementia, AD
has the characteristics of poor language, memory, per-
ception, behavior and activities of daily living. More-
over, the extracellular neurotoxic amyloid-β (Aβ)
plaques and intracellular neurofibrillary tangles have
been regarded as the neuropathological hallmarks of
AD [2]. It has been widely confirmed that AD is a
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multifactorial disease, and genetic factors is proved to
play a vital role in AD [3, 4]. However, in spite of
the progress in understanding risk factors related to
AD development, the underlying mechanisms involved
in this disease have not been completely understood
till now, and to date there is no curative treatment
for AD [5, 6].
Now many genes are proved to significantly influ-

ence AD risk, among which the complement compo-
nent (3b/4b) receptor 1 gene (CR1) has been proved
to affect AD susceptibility across different ethnic and
districts groups [7–12]. Currently, CR1 has been pos-
tulated to be a key factor for AD pathogenesis be-
cause of its role in regulating complement activity by
acting as a receptor of complement C3b protein [13].
More importantly, in AD patients, CR1 is found to be
associated with neuronal death [14] and hence has re-
ceived increasing attention. Although a significant as-
sociation between AD and single nucleotide
polymorphisms (SNPs) in several novel AD loci of
large case-control datasets is identified, CR1 is con-
sidered as one of the most important genetic suscep-
tibility loci in AD according to the Alzgene database
[15–17]. As well known, accumulation of Aβ in brain
is one important pathological hallmark of AD, more-
over, it is considered to induce a deleterious neurode-
generative cascade and finally cause cognitive
impairments [18]. Furthermore, it has been shown
that CR1 takes part in AD pathology by regulating
the amyloid protein (Aβ) metabolism [19], and
Johansson et al. [20] reveals that the single nucleotide
polymorphisms (SNPs) in CR1 gene were associated
with increased erythrocyte CR1 which will finally de-
creased AD risk. Hence, it would be meaningful to
discover the genetic variants of CR1 in AD
development.
In this study, we enrolled the participants from the

alzheimer’s disease neuroimaging initiative (ADNI)
database (http://www.loni.ucla.edu/ADNI), which is a
multicenter project to assess the role of genetic fac-
tors in neuroimage biomarkers and cerebrospinal fluid
(CSF) proteins. Next, we used PLINK software to
conduct the quality control procedures to enroll ap-
propriate SNPs in CR1, and then investigated genetic
influences of CR1 gene on Aβ metabolism, in order
to explore the role of CR1 genetic variants in the
progression of AD.

Methods
Participants
The data in our study were obtained from the ADNI
database, which contains genetic information, neuroim-
aging information, and CSF proteins of AD, and normal
controls (NC) (http:// www.adni-info.org). All

participants of this study were included with the specific
criteria according the protocol of ADNI, and then di-
vided into two groups, including the AD group and NC
group. Briefly, when participants met the National Insti-
tute of Neurological and Communicative Disorders
(NINCDS) and Stroke/Alzheimer’s Disease and Related
Disorders Association (ADRDA) criteria for probable
AD [21], they were diagnosed as AD.

Genotyping data
All genetic information of SNPs of CR1 were detected
using the Illumina Infinium Human610-Quad Bead Chip
(Illumina, Inc., San Diego, CA) or Illumina Human
Omni Express Bead Chip. And the quality control proce-
dures were performed by using PLINK software. The
SNPs would be excluded when minimum minor allele
frequency (MAF) was less than 0.01 or Hardy-Weinberg
(H-W) equilibrium test’s value was less than 0.05.

AV45-pet
The imaging data of PET with amyloid tracer, florbetapir
(AV-45), was obtained from UC Berkeley-AV45 analysis
database [22]. In order to define cortical grey matter re-
gions of interest, these images were segmented and par-
cellated with Freesurfer (Version 5.3.0). After that, four
regions, including the frontal, cingulate, parietal, tem-
poral and florbetapir were involved in this study [23]. In
addition, through averaging across the four cortical re-
gions and dividing it by whole cerebellum florbetapir,
the cortical standardized uptake values ratios (SUVR)
were calculated [24]..

CSF Aβ42 proteins
Similarly, the data about the level of CSF Aβ42 was also
got from ADNI database. Briefly, all samples of CSF

Table 1 The details of enrolled samples from ADNI database

Characteristics NC AD

N Mean ± SD Mean ± SD

Age (years) 281 74.51 ± 5.56 48 75.51 ± 9.23

Gender (male/female) 281 136/145 48 30/18

Education (years) 281 16.41 ± 2.66 48 15.73 ± 2.62

ApoE ε4 (0/1/2) 281 204/70/7 48 14/25/9

CDRSB (scores) 207 6.54 ± 0.55 47 5.3 ± 0.72

ADAS (scores) 281 29.07 ± 1.15 48 22.96 ± 2.03

MMSE (scores) 281 9.06 ± 4.23 48 29.8 ± 8.44

RAVLT total (scores) 280 44.83 ± 9.6 47 22.32 ± 7.84

FAQ (scores) 281 0.17 ± 0.66 48 12.6 ± 7.14

ADNI alzheimer’s disease neuroimaging initiative, AD alzheimer’s disease, ApoE
ε4 apolipoprotein E ε4, SD standard deviations, ADAS alzheimer’s disease
assessment scale, CDRSB clinical dementia rating scale sum of boxes, FAQ
functional activities questionnaire, MMSE mini-mental state exam, NC normal
controls, RAVLT rey auditory verbal learning test

Zhu et al. BMC Medical Genetics          (2020) 21:181 Page 2 of 8

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org


were collected and transported to ADNI Biomarker Core
laboratory at the University of Pennsylvania Medical
Center. Following thawed at room temperature and gen-
tle mixed, these samples were used for preparation of al-
iquots (0.5 ml). Finally, the level of CSF Aβ42 was
determined with multiplex xMAP luminex platform
(Luminex Corp, Austin, TX) with immunoassay kit ac-
cording to reagents [25].

Statistical analyses
All statistical analyses were determined by using the
SPSS 18.0 software (SPSS Inc., Chicago, IL, USA) and
PLINK (http:// pngu.mgh.harvard.edu/wpurcell/plink/).
The demographic characteristics were performed with
means ± standard deviations (SD). The t-test or chi-
square test were used for the analysis of demograph-
ics and genotypic frequencies. The correlation be-
tween CR1 genotypes and Aβ metabolism in all
cohorts were estimated with multiple linear regression
models. The false discovery rate (FDR) test was ap-
plied to control for multiple hypothesis testing [26],
and a P ≤ 0.05 was considered to be statistically
significant.

Results
Characteristics of included participants
As shown in Table 1, a total of 329 individuals (48 AD
and 281 NC) were enrolled in our study according to
the quality control for genotype. Moreover, the AD
group with 70.8% has higher frequency of the ε4 allele
within apolipoprotein E (ApoE) gene than the NC group
with 26.3%. According to the scores of different neuro-
psychological scales, the patients with AD have worse
cognitive function in comparison to those NC group,
respectively.

Characteristics of included SNPs of CR1
After quality control with PLINK software, a total of 83
SNPs of CR1 were enrolled in our study. Next, we used
Haploview version 4.2 to explore the linkage disequilib-
rium (LD) patterns of these included SNPs of CR1 (Sup-
plementary Fig. 1). The results showed these SNPs
distributed from block 1 to 5 which indicated the SNPs
capture most common variants in CR1. Furthermore,
the characteristics (major allele, minor allele, MAF, func-
tional consequence, position and H-W value) of in-
cluded CR1 SNPs were illustrated in supplementary
Table 1. The MAF values of all included SNPs were
more than 0.01, and the H-W values of included SNPs
were more than 0.05.

The effects of CR1 genetic variants on AV-45 PET
It is well known that the data of the AV-45 retention on
the PET imaging of amyloid may represent Aβ accumu-
lation biomarkers. In the present study, our data re-
vealed five SNPs, including rs10494884, rs11118322,
rs1323721, rs17259045 and rs41308433 were signifi-
cantly related to the level of tracer retention on amyloid
PET imaging. Moreover, Rs10494884, RS11118322, and
rs1323721 were in block 3, rs17259045 was in block 2
and RS41308433 was in block 4. As illustrated in Table 2,
the variant in rs10494884 would increase Aβ accumula-
tion in temporal, frontal, and SUVR (P = 0.03392, P =
0.03845 and P = 0.04447). Similarly, rs11118322 and
rs1323721 were proved to significantly increase Aβ accu-
mulation in temporal and frontal (all, P < 0.05). In
addition, our data revealed that the variant in
rs17259045 may widely decrease the level of Aβ accu-
mulation in frontal (P = 0.007581), temporal (P =
0.009251), SUVR (P = 0.01725), cingulated (P = 0.02512)
and parietal (P = 0.03033). And rs41308433 was proved

Table 2 The association of genetic variants in CR1 gene with Aβ deposition on AV-45 PET among all people

SNPs Gene regions Position (Chromosome) Major allele Minor allele Regions β P value

rs10494884 intron variant 1:207674531 G A temporal 0.03364 0.03392

frontal 0.03543 0.03845

SUVR 0.02647 0.04447

rs11118322 intron variant 1:207674706 T C temporal 0.03342 0.03448

frontal 0.03477 0.04155

rs1323721 intron variant 1:207649895 A G temporal 0.03245 0.04141

frontal 0.03381 0.04894

rs17259045 missense 1:207609362 A G frontal −0.0773 0.007581

temporal −0.06968 0.009251

SUVR −0.05298 0.01725

cingulate −0.07068 0.02512

parietal −0.06473 0.03033

rs41308433 intron variant 1:207699490 A C temporal −0.0427 0.04292

CR1 complement component (3b/4b) receptor 1 gene, SNPs single nucleotide polymorphisms, Aβ amyloid protein, SUVR standardized uptake values ratios
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to reduce the Aβ accumulation only in temporal (P =
0.04292).
Then, we conducted further analyses about the associ-

ations of the variants and Aβ accumulation in AD and
NC population. As shown in Table 3 and Fig. 1,
rs17259045 may decrease Aβ accumulation of AD pa-
tients in frontal (AA: mean ± SD, 1.593 ± 0.2906, N = 37;
AG: mean ± SD, 1.37 ± 0.2805, N = 9; P = 0.02681), tem-
poral (AA: mean ± SD, 1.486 ± 0.2857, N = 37; AG:
mean ± SD, 1.273 ± 0.2458, N = 9; P = 0.02785), SUVR
(AA: mean ± SD, 1.413 ± 0.2178, N = 37; AG: mean ± SD,
1.214 ± 0.2062, N = 9; P = 0.01173), and cingulated (AA:
mean ± SD, 1.711 ± 0.3232, N = 37; AG: mean ± SD,
1.455 ± 0.2704, N = 9; P = 0.02717).

The effects of CR1 genetic variants on CSF Aβ42
biomarkers
Next, the correlations between CR1 genetic variants
and CSF Aβ42 biomarkers were determined. The re-
sults indicated that rs12567945 could observably in-
crease CSF Aβ42 in NC population (TT: mean ± SD,
191.6 ± 53.29, N = 116; TC: mean ± SD, 219.7 ± 45.29,
N = 16; P = 0.02589; Table 3 and Fig. 2), which was
found in block 3.

Discussion
In our study, we explored the relation between whole
CR1 genetic variants and Aβ metabolism biomarkers,

and the results showed that five SNPs, including
rs10494884, rs11118322, rs1323721, rs17259045 and
rs41308433 could significantly alter Aβ accumulation
in brain. In further analyses, the results suggested
rs17259045 might decrease Aβ accumulation among
AD patients. In addition, the genetic variants in
rs12567945 would increase CSF Aβ42 in NC
population.
As we all known, Aβ is one important pathological

characteristic of AD [27], which may induce the acti-
vation of the classical complement pathway in AD
brains [28, 29]. Moreover, CR1 is a necessary compo-
nent of complement system, and it has been reported
to have a close connection with amyloid plaque bur-
den during aging [30, 31]. More importantly, CR1
genetic variants are found to link to intelligence de-
cline, and may influence the eliminations of Aß pla-
ques [30]. Hence, it is urgent to investigate whether
CR1 polymorphisms take part in the pathogenesis and
development of LOAD. Actually, previous studies
have revealed the association between CR1 SNPs and
amyloid plaque [30, 32–34], including the CSF Aβ
levels [35–37]. However, the current studies only dis-
cuss the role of specific SNPs (rs6656401, rs3818361,
rs670173, and rs1408077) in Aβ metabolism. Briefly,
rs6656401 and rs3818361, within the CR1 gene, have
association with LOAD susceptibility in Caucasians
[17], which are found to be in moderate LD (D′ =

Fig. 1 The analysis about the associations of the variants and Aβ accumulation. The rs17259045 decreased Aβ accumulation in frontal a, temporal
b, SUVR c, and cingulate d of AD patients
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0.824, r2 = 0.328) [38]. Specially, rs3818361 is found to
be in block 1 [37]. In our study, the results firstly re-
vealed that rs17259045 could reduce the level of Aβ
accumulation among AD patients, respectively; more-
over, rs12567945 could increase CSF Aβ42 in NC
population. In fact, rs17259045 was in the missense
of CR1 gene, and rs12567945 located in the intron
variant of CR1 gene. We speculated the genetic vari-
ants in the two SNPs might modulate the level of
CR1, influence the activation of complement system,
and finally alter the Aβ metabolism in the clearance
of Aβin the brain. Taken together, these results indi-
cated that the detection of variants in CR1 gene may
be useful to diagnose AD timely, and it may be a use-
ful method to treat AD via altering CR1 level.
Our previous study had reported that several vol-

ume (entorhinal, middle temporal, posterior cingulate,
precuneus, parahippocampal), volume of subcortical
(amygdale and hippocampus) and CA1 (the most as-
sociated area with the AD-specific amnenstic syn-
drome in hippocampus) were significantly related to

AD [39]. However, our study failed to find the associ-
ation between the genetic variants of CR1
(rs17259045 and rs12567945) and the above regions
of interest via using ADNI data. As well know, one
characteristic feature of synaptic function and density
is cerebral glucose metabolic activity. Moreover, the
change of glucose metabolic activity in specific brain
regions could be valued via FDG PET [40]. Our study
indicated that AD patents with genetic variants in
rs17259045 might have more level of glucose meta-
bolic activity in right angular (P = 0.03278). Hence,
we hypothesized that genetic variants in CR1 might
influence cognitive function (Fig. 3), through regulat-
ing CSF Aβ level, changing Aβ accumulations in
brains, influencing the glucose metabolic activity, as
well as altering the synaptic function and density.

Conclusion
In summary, our study found five SNPs (rs10494884,
rs11118322, rs1323721, rs17259045 and rs41308433)
were significantly linked to Aβ accumulation in brain. In

Fig. 2 Further analyses about the associations of the rs12567945 and CSF Aβ42 in NC population
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further analyses of positive results, rs17259045 was
found to decrease Aβ accumulation among AD patients.
In addition, our study indicated genetic variants in
rs12567945 would increase CSF Aβ42 in NC population.
Taken together, our study revealed some novel SNPs in
CR1 which might be involved in AD development
through regulating the Aβ pathology. However, several
limitations still exist in this study. Firstly, the numbers
of included samples were relative small. Secondly, our
study was explored only in Caucasians. Hence, further
study with larger samples and different ethnicities is still
necessary.
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