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Abstract

Background: Osteoporosis individual susceptibility is determined by the interaction of multiple genetic variants
and environmental factors. The aim of this study was to conduct SNP-SNP interaction analyses in candidate genes
influencing heel quantitative ultrasound (QUS) parameter in early adulthood to identify novel insights into the
mechanism of disease.

Methods: The study population included 575 healthy subjects (mean age 20.41; SD 2.36). To assess bone mass QUS
was performed to determine Broadband ultrasound attenuation (BUA, dB/MHz). A total of 32 SNPs mapping to loci
that have been characterized as genetic markers for QUS and/or BMD parameters were selected as genetic markers
in this study. The association of all possible SNP pairs with QUS was assessed by linear regression and a SNP-SNP
interaction was defined as a significant departure from additive effects.

Results: The pairwise SNP-SNP analysis showed multiple interactions. The interaction comprising SNPs rs9340799
and rs3736228 that map in the ESR1 and LRP5 genes respectively, revealed the lowest p value after adjusting for
confounding factors (p-value = 0.001, β (95% CI) = 14.289 (5.548, 23.029). In addition, our model reported others
such as TMEM135-WNT16 (p = 0.007, β(95%CI) = 9.101 (2.498, 15.704), ESR1-DKK1 (p = 0.012, β(95%CI) = 13.641 (2.
959, 24.322) or OPG-LRP5 (p = 0.012, β(95%CI) = 8.724 (1.936, 15.512). However, none of the detected interactions
remain significant considering the Bonferroni significance threshold for multiple testing (p<0.0001).

Conclusion: Our analysis of SNP-SNP interaction in candidate genes of QUS in Caucasian young adults reveal several
interactions, especially between ESR1 and LRP5 genes, that did not reach statistical significance. Although our results do
not support a relevant genetic contribution of SNP-SNP epistatic interactions to QUS in young adults, further studies in
larger independent populations would be necessary to support these preliminary findings.
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Background
Osteoporosis represents an important public health
problem worldwide that triggers near 9 million fractures
annually [1]. Its prevalence is increasing due to the age-
ing of the population [2]. Osteoporosis is characterized
by a deterioration of bone tissue microarchitecture that
leads to low bone mineral density (BMD) and an

increased risk of bone fragility fractures [3]. As occurs in
many complex diseases, it is widely accepted that osteo-
porosis individual susceptibility is determined by the
interaction of multiple genetic variants and environmen-
tal factors [4, 5].
An important determinant of osteoporosis risk later in

life is the peak bone mass (PBM) [6]. Enhancing bone
mass accrual to maximize PBM, which is attained by
early adulthood, could help in the elderly to reduce the
risk of fracture [6]. Current evidence suggests that
genetic factors are major contributors to regulation of
PBM, accounting for 50% and 80% of the variance in
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BMD [7, 8]. Therefore, identifying genetic factors affect-
ing bone mass in early adulthood would be worthwhile.
Recently, it has been demonstrated that QUS predicts

fracture independently of BMD [9, 10]. QUS provides in-
formation about bone mass and other quality aspects
which may be of relevance in determining fracture risk
such as bone microstructure, elasticity or connectivity
[11, 12]. Besides this, previous studies have shown the
ability of heel QUS to predict independently fracture risk
[11, 13]. Compared to dual-energy x-ray absorptiometry
(DXA), QUS is more easily accessible, low-cost, non-
invasive and non-ionizing [14].
To identify the genetic factors underlying osteoporosis

susceptibility, extensive genetic studies have been con-
ducted reporting association of several genetic variants
with different bone phenotypes [15–18]. However, these
explain little of the heritability in complex phenotypes
[19]. The missing heritability problem refers to the ob-
servation that the number of significant associations dis-
covered does not form a substantial proportion of
heritability for most traits. Thus, SNP-SNP interactions
could help explain the missing heritability of common
complex traits and therefore, their identification is con-
sidered of relevance. To date, only a few studies have
been performed to identify SNP-SNP interactions influ-
encing osteoporosis-related traits [20–26]. Most of them
have investigated BMD determined by DXA, and there-
fore the possible influence of genetic interactions on
QUS parameters is still unknown [25–27].
The independent association between single nucleo-

tide polymorphisms (SNPs) in WNT16 (rs2908007,
rs2908004, and rs2707466) [18, 28, 29], RSPO3
(rs774121) [18] and LRP5 (rs3736228) [30] genes and
QUS parameters have been well established. In previ-
ous replication studies from our group we investi-
gated the implication of 32 genetic markers reported
to influence QUS and/or BMD parameters, and con-
firmed that WTN16, RSPO3 and LRP5 are genetic fac-
tors that determine bone mineralization in young
adults [28, 30].
Taking into consideration all this evidence, and bear-

ing in mind that it is likely that interactions of common
variants at different loci are influencing QUS traits, the
aim of this study was to identify SNP-SNP interactions
between SNPs independently associated with QUS, that
could contribute to QUS traits variation in early
adulthood.

Methods
Study subjects
A total of 575 Caucasian healthy individuals (400
females and 175 males, median age 20,41 ± 2,69 re-
cruited from different centres of Granada (Spain) com-
posed the study population after giving written informed

consent. Local ethics committees approved the study
that was conducted following the Declaration of
Helsinki. Were excluded from the study those individ-
uals who reported therapy with hormonal contracep-
tives, diseases of metabolic or endocrine systems and
history of bone disease.

Covariates
A body composition analyzer (TANITA BC-418MA)
was used to estimate weight, fat mass and lean mass to
the nearest 0,11 Kg. Height measurement was performed
with a Harpenden stadiometer (Holtain 602VR®) to the
nearest 0,1 cm. Body mass index (BMI) was calculated
as weight divided by height squared (kg/m2). Physical ac-
tivity (PA) was quantified using the short form and self-
administered version of the International Physical
Activity Questionnaire (IPAQ) [31]. Dietary calcium in-
take (DCI) was obtained from a 72 h recall method in-
cluding intakes on Thursday, Friday, and Saturday.
During the interviews and for a better precision of the food
records, pictorial food models and standard household
measures were used. All the 72 h recall were computerized
with a nutrient analysis program (Nutriber 1.1.5) to convert
food records into amounts of nutrients intake.

QUS of the heel
Ultrasound measurements (BUA, dB/MHz) were performed
using the CUBA clinical ultrasound bone densitometer
(McCue Ultrasonic Limited, Compton, Winchester, UK) at
the right calcaneus to assess bone mass. This localization
was selected on the basis of its accessibility and its
high content of trabecular bone [32]. To guarantee
the long-term stability of the ultrasound bone densi-
tometer, daily calibrations were performed using a
with physical phantom.

SNPs selection and genotyping process
A total of 32 SNPs mapping to loci that have been char-
acterized as genetic markers for QUS and/or BMD pa-
rameters were selected.
DNA was extracted from saliva samples collected from

all study participants with the 500 Collection Kit (DNA
Genotek Inc., Ontario, Canada).
Genotyping was carried out using a custom design

TaqMan OpenArray (Life Technologies, Carlsbad, CA,
USA). Genotyping plate containing a predesigned TaqMan
genotyping assay for every polymorphism was conducted
in the Genomic and Genotyping unit of GENYO centre
(Pfizer-University of Granada-Junta de Andalucía Centre
for Genomics and Oncological Research). The amplifica-
tion reaction was performed following the conditions rec-
ommended by the manufacturer. For detection of the
fluorescence and interpretation of the genotyping results
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the QuantStudio 12 K Flex Real-Time PCR System
(Applied Biosystems) was used.
All the Taqman assays included in the array showed a

genotyping call rate above 95%. The accuracy of the
genotyping process was verified including in all plates
negative controls and duplicate samples. We observed
100% reproducibility.

Statistical analysis
For all analyses the genotype of each SNP was encoded
as 0, 1, 2, where 0 and 2 denotes homozygotes with
major allele and minor allele respectively and 1 codes
heterozygotes.
The Pearson’s goodness-of-fit χ2 test was used to as-

sess the Hardy-Weinberg equilibrium (HWE). First, to
reduce redundancy between SNPs, only one SNP out of
all SNPs in strong pairwise linkage disequilibrium
(r2 > 0.90) was kept, leading to the final inclusion of 30
SNPs (rs2707466 and rs7988338 were excluded)
(Table 1). All possible pairwise SNP-SNP interactions be-
tween the selected 30 SNPs (435 possible interactions)
were assessed by bivariate linear regression modelling of
QUS measurements. Linear regression analyses were ad-
justed for the following covariates: sex, age, BMI, phys-
ical activity and calcium intake. The interaction between
SNP1 and SNP2 was defined as the additional effect of
their concomitant carriage on QUS over the addition of
their independent effects (departure from additivity): βin-
teraction = βobserved – βexpected with βexpected = βSNP1 + βSNP2,
where βobserved is the observed effect of the concomitant
carriage of SNP1 and SNP2 (versus no carriage) in a bi-
variate linear regression, βSNP1 is the effect (β coefficient)
of SNP1 in the absence of SNP2, βSNP2 is the effect of
SNP2 in the absence of SNP1 in the same bivariate re-
gression framework (bivariate refers only to the number
of genetic markers (SNPs), as non-genetic covariates
have systematically been included for all analyses). The
results were reported as βinteraction (change of the out-
come variable QUS with 95% confidence intervals (CIs).
To all associations, the highly conservative Bonferroni
correction considering the number of tested SNPs was
applied. The cut-off value for significance was set at
p<0.0001 (0.05/435). The STATA software was used to
perform statistical analyses (version 11.0; STATA
Corporation, College Station, TX).

Results
The characteristics of the 575 study subjects have been
published previously [28]. Table 1 shows marker infor-
mation, including rsID and minor allele frequency
(MAF) for 32 SNPs genotyped. All the SNPs were in
HWE and none failed the frequency (MAF < 0.01) or
missingess (genotyping >0.05) tests.

The pairwise SNP-SNP interactions tested by linear
regression showed multiple interactions (Table 2). The
interaction comprising SNPs rs9340799 and rs3736228
that map in the ESR1 and LRP5 genes respectively,
revealed the lowest p value (0.001) after adjusting for
sex, age, BMI, physical activity and calcium intake. This
interaction amounted to a β (95% CI) = 14.289 (5.548,
23.029). Interestingly, we found several interactions
between different polymorphisms in these genes, further
supporting the presence of epistasis between these two
loci (rs556442 in LRP5 and rs9340799 in ESR1;
rs2234693 in ESR1 and rs3736228 in LRP5; rs2306862 in
LRP5 and rs9340799 in ESR1; rs556442 in LRP5 and
rs2234693 in ESR1). However, none of the pairwise
SNP-SNP tests reached the significant cut off p value
considering the Bonferroni correction for multiple test-
ing (p = 0.0001).
On the other hand, our analyses revealed SNP-SNP in-

teractions within the same genes (rs2908004 and
rs3801387 in WNT16; rs3736228 and rs2306862 in
LRP5; rs2982552 and rs3020331 in ESR1; rs2982552 and
rs9340799 in ESR1).

Discussion
In this study, we aimed to provide a more comprehen-
sive view of the genetic architecture underlying QUS by
analysing two-way interactions between common SNPs
in candidate genes. A number of SNPs in candidate
genes were analysed considering potentially important
covariates for bone mineralization process such as, age,
sex, calcium intake, physical activity and BMI.
This study is the first to investigate SNP-SNP interac-

tions with heel QUS trait. Our findings identified several
SNP-SNP interactions, highlighting that observed be-
tween rs9340799 in ESR1 and rs3736228 in LRP5.
However, the results from these analyses should be
interpreted with caution since SNP-SNP interactions did
not reach the highly conservative Bonferroni significance
threshold for multiple testing (p<0.0001). Even though
these data suggest that epistatic SNP-SNP interactions
does not influence heel ultrasound measurements in
young Caucasian adults, the possibility of a false negative
due to a limited statistical power cannot be excluded.
Oestrogen action in bone are mediated mainly through

ERα codified by the ESR1 gene, which has been associ-
ated with different osteoporosis related traits in previous
studies [33]. The positive effects of the oestrogens on
the skeleton have been well established; oestrogens play
a major role in the aetiology of osteoporosis by the regu-
lation of bone turnover and inhibition of bone loss [34].
These biological effects are mediated by binding and ac-
tivation of specific oestrogen receptors (ERα and ERβ)
[35]. The rs9340799 variant is located in the first intron
of the ESR1 gene and although this intron may contain
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regulatory elements, the functional implication of this
genetic variant remains unknown. In addition, low-
density lipoprotein receptor-related protein 5 (LRP5)
codifies a protein belonging to the Wnt canonical signal,
which regulates osteoblast and osteocyte function [36].
Similarly, the functional relevance of the rs3736228 SNP
located in LRP5 is still unknown [37, 38].
The results of this study could be suggestive of a well-

regulated cross-talk between ESR1 and LRP5 genes in
bone physiology. Although ESR1 and LRP5 develop dif-
ferent roles in skeletal homeostasis, they could be inter-
acting in bone cell biology through synergistic or
antagonistic actions. It could be hypothesised that

individuals carrying risk alleles at rs9340799 and
rs3736228 SNPs have a lower expression of both ESR1
and LRP5, which could lead to an impaired bone mass.
As we have analysed a cohort including only young
adults, our findings also may suggest that the interaction
between rs9340799 and rs3736228 SNPs might be impli-
cated in bone mass accrual. Although previous studies
have reported the individual contribution of these poly-
morphisms to osteoporosis-related phenotypes in early
adulthood [30, 38–41], the molecular mechanisms
through which these polymorphisms might interact are
still under investigation. Future studies are required to
elucidate the molecular mechanisms by this interaction

Table 1 General information for the studied single nucleotide polymorphisms (SNPs)

Chromosome Gene SNP Allele MAF in this study HWE (p)

2 SPTBN1 rs11898505 G > A 0.37 0.75

6 RSPO3 rs7741021 A > C 0.39 0.84

6 CCDC170 rs4869739 A > T 0.35 0.22

6 ESR1 rs3020331 C > T 0.43 0.10

6 ESR1 rs2982552 C > T 0.49 0.19

6 ESR1 rs2234693 T > C 0.44 0.19

6 ESR1 rs9340799 A > G 0.34 0.75

7 WNT16 rs2908007 T > C 0.18 0.33

7 WNT16 rs2908004 T > C 0.22 0.25

7 WNT16 rs3801387 T > C 0.10 0.78

7 WNT16 rs3801385 A > G 0.09 0.33

7 WNT16 rs2707466 G > A 0.22 0.39

7 WNT16 rs2536184 G > A 0.03 0.09

8 OPG rs4355801 A > G 0.39 0.17

8 OPG rs3102735 T > C 0.12 0.35

8 OPG rs2073618 G > C 0.46 0.63

10 DKK1 rs7902708 G > C 0.11 0.77

11 TMEM135 rs597319 A > G 0.31 0.19

11 LRP5 rs2306862 C > T 0.19 0.32

11 LRP5 rs556442 A > G 0.42 0.88

11 LRP5 rs3736228 C > T 0.17 0.46

13 RANKL rs9594759 T > C 0.48 0.40

13 RANKL rs12585014 G > A 0.18 0.11

13 RANKL rs7988338 G > A 0.19 0.40

13 RANKL rs2148073 C > G 0.18 0.60

17 SOST rs4792909 G > T 0.42 0.31

17 SOST rs851054 A > G 0.38 0.06

17 SOST rs2023794 T > C 0.05 0.18

18 RANK rs1805034 C > T 0.41 0.26

18 RANK rs12458117 G > A 0.19 0.35

18 RANK rs3018362 A > G 0.32 0.18

19 GPATCH1 rs10416265 A > G 0.32 0.06

MAF minor allele frequency, HWD p value for Hardy-Weinberg equilibrium
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is implicated in the bone mass acquisition process dur-
ing early adulthood.
Besides the interaction between LRP5 and ESR1, our

model suggested others such as TMEM135-WNT16,
ESR1-DKK1 or OPG-LRP5. Interestingly, all of these
genes belong to well characterize pathways implicated in
the complex mechanisms that regulate bone formation.
Thus, a novel line of research would be very interesting
to elucidate how they may be interacting at the molecu-
lar level.
On the other hand, SNP-SNP interactions between

variants that were not in LD within the same gene were
observed. That was the case of genes WTN16, LPR5 and

ESR1. Thus, beyond the individual effect of SNPs in a
gene, epistatic SNP-SNP interactions in the same gene
occur and could be a potential factor contributing to the
unexplained heritability of bone mass acquisition.
On the other hand, it could be hypothesised that the

effects of SNP-SNP interactions would be weak and
therefore, a very large population size would be needed
to detect associations surpassing the p value threshold
for multiple testing (p<0.0001). Thus, a limitation of the
present study could be the population size included that
would not reach enough statistical power to detect epi-
static SNP-SNP interactions with weak effect. Therefore,
in order to support our preliminary results, further

Table 2 Gene-gene interaction analysis

SNP1 Gene 1 SNP2 Gene 2 β (95% CI) p-value

rs9340799 ESR1 rs3736228 LRP5 14.289 (5.548, 23.029) 0.001

rs2908004 WNT16 rs3801387 WNT16 77.350 (25.890, 128.808) 0.003

rs597319 TMEM135 rs2908004 WNT16 9.101 (2.498, 15.704) 0.007

rs3736228 LRP5 rs2306862 LRP5 23.476 (5.623, 41.327) 0.010

rs9340799 ESR1 rs7902708 DKK1 13.641 (2.959, 24.322) 0.012

rs4355801 OPG rs556442 LRP5 8.724 (1.936, 15.512) 0.012

rs3801387 WNT16 rs2982552 ESR1 −8.705 (−15.554, −1.855) 0.013

rs556442 LRP5 rs9340799 ESR1 9.859 (2.045, 17.673) 0.013

rs11898505 SPTBN1 rs10416265 GPATCH1 −9.200 (−16.751, −1.649) 0.017

rs2982552 ESR1 rs3020331 ESR1 13.312 (2.242, 24.381) 0.018

rs2148073 RANKL rs1805034 RANK 8.443 (1.127, 15.758) 0.023

rs4869739 CCDC170 rs7741021 RSPO3 −7.748 (−14.501, −0.995) 0.024

rs2234693 ESR1 rs3736228 LRP5 10.606 (1.361, 19.851) 0.024

rs556442 LRP5 rs12458117 RANK −9.760 (−18.261, −1.258) 0.024

rs3801387 WNT16 rs4355801 OPG 7.333 (0.887, 13.777) 0.025

rs2306862 LRP5 rs9340799 ESR1 8.239 (0.973, 15.504) 0.026

rs2982552 ESR1 rs9340799 ESR1 9.322 (1.037, 17.606) 0.027

rs7902708 DKK1 rs4355801 OPG −8.159 (−15.383, −0.934) 0.027

rs2306862 LRP5 rs4355801 OPG 7.779 (0.888, 14.668) 0.027

rs2306862 LRP5 rs11898505 SPTBN1 7.989 (0.793, 15.183) 0.029

rs556442 LRP5 rs2234693 ESR1 7.449 (0.664, 14.233) 0.031

rs3801385 WNT16 rs2982552 ESR1 −11.658 (−22.351, −0.965) 0.032

rs9340799 ESR1 rs7741021 RSPO3 7.191 (0.409, 13.973) 0.037

rs597319 TMEM135 rs851054 SOST 6.828 (0.405, 13.25) 0.037

rs2148073 RANKL rs10416265 GPATCH1 −7.879 (−15.478, −0.278) 0.042

rs597319 TMEM135 rs2908007 WNT16 6.889 (0.197, 13.579) 0.043

rs3801387 WNT16 rs12458117 RANK 7.949 (0.192, 15.704) 0.044

rs2234693 ESR1 rs3801385 WNT16 13.418 (0.273, 26.562) 0.045

rs3018362 RANK rs10416265 GPATCH1 7.359 (0.114, 14.604) 0.046

rs12458117 RANK rs7741021 RSPO3 −7.388 (−14.744, −0.031) 0.048

rs2908004 WNT16 rs4355801 OPG 7.273 (0.014, 14.530) 0.049

SNP1 and SNP2 indicate the individual SNPs within a given SNP-SNP interaction model. Beta represents the regression coefficient. P values are shown adjusted for
the covariates sex, age, BMI, physical activity and calcium intake
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studies including larger population size and meta-
analysis are needed. On the other hand, the current ap-
proach considered only two-locus interactions and
therefore more complex interactions between three or
more genetic markers are unknown. Again, larger stud-
ies are required to confirm our findings and to elucidate
mechanisms by which the genetic interaction between
these genes influences quantitative bone phenotypes in
early adulthood.

Conclusions
Our analysis of SNP-SNP interaction in candidate genes
of QUS in Caucasian young adults reveal several interac-
tions, especially between ESR1 and LRP5 genes, that did
not reach statistical significance. Although our results do
not support a relevant genetic contribution of SNP-SNP
epistatic interactions to QUS in young adults, further
studies in larger independent populations would be ne-
cessary to support these preliminary findings.
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