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Abstract

Background: Cognitive impairments are heterogeneous conditions, and it is estimated that 10%
may be caused by a defect of mental function genes on the X chromosome. One of those genes is
Aristaless related homeobox (ARX) encoding a polyA-rich homeobox transcription factor essential for
cerebral patterning and its mutations cause different neurologic disorders. We reported on the
clinical and genetic analysis of an Italian family with X-linked mental retardation (XLMR) and intra-
familial heterogeneity, and provided insight into its molecular defect.

Methods: We carried out on linkage-candidate gene studies in a new MRX family (MRX87). All
coding regions and exon-intron boundaries of ARX gene were analysed by direct sequencing.

Results: MRX87 patients had moderate to profound cognition impairment and a combination of
minor congenital anomalies. The disease locus, MRX87, was mapped between DXS7104 and
DXS1214, placing it in Xp22-p21 interval, a hot spot region for mental handicap. An in frame
duplication of 24 bp (ARXdup24) in the second polyAlanine tract (polyA_ll) in ARX was identified.

Conclusion: Our study underlines the role of ARXdup24 as a critical mutational site causing
mental retardation linked to Xp22. Phenotypic heterogeneity of MRX87 patients represents a new
observation relevant to the functional consequences of polyAlanine expansions enriching the
puzzling complexity of ARXdup24-linked diseases.
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Background

X-linked mental retardation (XLMR) is a heterogeneous
genetic condition characterized by variable cognitive
handicap with IQ below 70. To date more than 50 XLMR
genes have been recognized [1-3]. Each of them accounts
for a very small proportion of the affected families with
the exception of FMR1, whose loss of function mutation
causes the Fragile X syndrome, and the Aristaless X (ARX)
gene mutated in several syndromic and non syndromic
mentally retarded patients [4-9].

The ARX gene (OMIM #300382) was identified as the
causative gene in several allelic brain diseases with MR
such as i) XLAG or X-linked lissencephaly with abnormal
genitalia (OMIM #300215) [10]; ii) Proud syndrome or
mental retardation with agenesis of the corpus callosum,
microcephaly, limb contractures, scoliosis, coarse faces,
tapered digits and urogenital abnormalities (OMIM
#30004) [10]; iii) myoclonic epilepsy syndrome (OMIM
#300432) [11]; iv) West syndrome or X-linked infantile
spasm syndrome with hypsarrhythmia and mental retar-
dation (OMIM #308350) [12]; v) Partington dystonic
syndrome (OMIM #309510) [13]; vi) non syndromic X-
linked mental retardation (OMIM #300382) [14].

ARX encodes the Aristaless-related protein, a bi-functional
homeobox transcription factor essential for cerebral pat-
terning and for the maintenance of specific neuronal sub-
types in the cerebral cortex [15]. It belongs to the Qs
Paired-like (Prd-like) class genes, an ancient family of tran-
scription factors with a key role in the early evolution of
the animal head and development of the central nervous
system [16]. The ARX protein contains a number of con-
served domains, including the two DNA binding domains
(Homeobox and Aristaless), and four distinct hydropho-
bic polyalanine tracts (polyA_I, II, IIl and IV) with a hypo-
thetical role as transcriptional suppressor [17,18].

The Arx knockout mouse is characterized by a small brain
with aberrant migration and differentiation of GABAergic
interneuron progenitors and altered testes, a complex
phenotype similar to the human XLAG syndrome [19,20].
Murine expression studies showed that Arx is widespread
throughout telencephalic structures implicated in the
pathophysiology of learning formation [13,14,20].

ARX gene represents a hot spot for mutations in families
with cognition disorders because its mutations account
for 9.5% of X-linked MR families [7]. The most frequent
mutation is c.428_451dup24, also known as ARXdup24,
a 24 bp duplication in exon 2 resulting in elongation of
the second polyalanine tract (polyA,,_II), that alone
might account for 6.6% of all XLMR and 41% of families
with mutations in ARX gene [4-9]. The c.428_451dup24
mutation has never been found in association with severe
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brain malformations (i.e. XLAG or Proud syndromes).
However, variable phenotypic expression is often
observed within the same family with c¢.428_451dup24
[21,22] reinforcing the notion that ARX is a pleiotropic
gene that, in a diverse genetic context and/or under the
influence of modifier genes, controls different aspects of
human brain morphogenesis and function.

Here we present the molecular and clinical characteriza-
tion of a new XLMR family (MRX87) linked to the Xp21
region in which we found the segregation of the
€.428_451dup24 associated to intra-familial clinical vari-
ability. Our study aims to enrich the clinical and genetic
description of mental defects due to polyalanine expan-
sions in Aristaless protein.

Methods

Ascertainment of family members

Mental retardation was reported in five affected men of a
four-generations Italian family (Figure 1). This family
includes two affected brothers (IV:13 and IV:14), two
affected first cousins (III:5 and III:10) and one affected
great uncle (II:5). Peripheral venous blood samples were
collected from family members. Informed consent had
been obtained. Studies and procedures have been per-
formed with the approval of the ethic committee of the
host institutions according to the Helsinki Declaration.
Karyotype analysis after G-banding was normal in all fam-
ily members and molecular analysis of the Fragile X muta-
tion was negative in all patients.

Linkage analysis

Genomic DNA was isolated from the nucleated peripheral
blood leukocytes using the Salting out procedure. A stand-
ard set of microsatellite markers on the X chromosome,
evenly spaced every 10 cM (ABI PRISM Linkage Mapping
Sets vs2, Applied Biosystems) was PCR amplified using
conditions already described [3]. Thirteen individuals of
the family were genotyped (Figure 1) and PCR products
were analysed on automatic sequencer (ABI PRISM 3100,
Applied Biosystem). Extra fluorescently labelled primers
were synthesized for seven additional polymorphic mark-
ers chosen in public databases. Two-point linkage analysis
was performed by the MLINK program version 5.1, from
the LINKAGE software package [3]. The approved gene
symbol MRX87 (Mental Retardation X-Linked 87) was
assigned according to the HUGO (Human Genome
Organization) nomenclature. X-inactivation status was
tested by HUMARA (Human Androgen Receptor Gene)
fluorescent assay according to Fimiani et al [23]. XCI pat-
terns were classified as random (XCI £ 70%), non random
(70% < XCI < 80%) or skewed (XCI > 90%).
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The four-generation family with MRX87 haplotypes for markers in Xp22-p21 and segregation of ARX mutation. Thirteen indi-
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(bottom), as shown.

Mutation analysis

All coding exons and the flanking intronic sequences of
the ARX gene were amplified using DNA from affected
and non-affected members of the MRX87 family. Eight
primer pairs were used, namely: 1F 5'-CCA ACA CAC ACC
CAT CCAT-3'and 1R 5'-CCG AAC ACC AAA CAT CCA A-
3' for exon 1; 2aF 5'-CAA GGC GTC GAA GTC TGG TG-3'
and 2aR 5'-GTA CGA CIT GCT GCG GCT GA-3', 2bF 5'-
CTC CIT CAG GGT GCG GCA GC-3' and 2bR 5'-CCA
GCA GCT CCT CCT CGT CG-3', 2cF 5'-CGT CAC GCA
CCC GGA GGA GC-3' and 2cR 5'-AGC CCG CTG TCC
CTC CCT GG-3' for exon 2; 3F 5-TGG AGT AGG CCT
GCC ATA GA-3' and 3R 5'-CCA ACC CAT CTC TCT CTC
TCC-3' for exon 3; 4aF 5'-GCC AAG GGA AGG GAC GGG
TA-3" and 4aR 5'-GGT AGG GGC TGA GCG GGT GG-3/,

4bF 5'-GAG AAG GCA GGC GCG CAG AC-3' and 4bR 5'-
ACT CCT GCC TCC TCC CTG CC-3' for exon 4; 5F 5'-CCT
CGG GGA ATA TCT GGA CT-3' and 5R 5'-TTG AGT GGT
GCT GAG TGA GG-3' for exon 5. The PCR fragments were
sequenced in both directions with the ABI PRISM 3100
DNA sequencer (Applied Biosystem). The 24 base pair
duplication in exon 2 was also visualized in patients and
carrier women by separating the PCR fragments of ampli-
con 2a (472 bp) and 2b (409 bp) on a 3% agarose gel.

Results

Neurological and physical examination

A diagnosis of MR associated with minor anomalies was
made after examination of the patients (II:5, 1II:5, III:10,
IV:13 and IV:14; Figure 1) at the Neurological Center
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(CARSIC, Venafro, Italy). Careful examination of the
patients' phenotypes was performed and the intelligence
quotient was assessed by Wechsler Adult intelligence Scale
(WAIS). All affected men were born at term after normal
pregnancy; no statural growth deficiency was observed.
No adverse prenatal events of interest were reported and
an extensive metabolic work-up yielded negative results.
None of them had convulsion or hand dystonia. All had
normal vision and no gonad malformations were
recorded.

Four of them (II:5, I1I:10, IV:13 and IV:14) were thor-
oughly examined and a marked intra-familial heterogene-
ity was observed. Patients presented a variable cognitive
impairment, moderate in IV:13 and IV:14 and severe in
II:5, I11:5, and I11: 10. Their clinical evaluation was summa-
rized in Table 1. No dysmorphic signs were observed (Fig-
ure 2). In patient II:5, we found pyramidal hypotonia,
bilateral Babinski signs and demential behavior. Bilateral
neurosensorial deafness and a deficit of the VII cranial
nerve were also observed. These signs were not present in
the other affected men. However, because IL:5 is the oldest
affected man in the pedigree, it is possible that these
symptoms are age-related and may eventually manifest in
the other patients at a later time. Unlike II:5, IV:13 and
IV:14, whose MRI examinations did not reveal any struc-
tural alterations, patient I11:10 showed enlarged subarach-
noid spaces and cerebellar tonsils below the foramen
magnum (data not shown). No signs of increased intrac-
ranial pressure or cortex lesions were detected in this
patient.

Patient II:5 and patient IV:13 had severe urinary inconti-
nence, a clinical sign often observed in association with
MR [24]. Only in patient IV:14, we diagnosed a moderate
intellectual handicap associated with a language deficit.
Three out of four probands showed a flatfoot deformity
(II1:10, IV:13 and IV:14), a defect that was not evident in
the unaffected men of the family. The obligate carrier
women are of normal intelligence and clinically indistin-

Table I: Synopsis of MRX87 male patients

http://www.biomedcentral.com/1471-2350/8/25

guishable from their non carrier sisters. No carrier moth-
ers recalled serious abnormalities in pregnancy.

MRX87 was linked to Xp22-Xp21 and is due to a dup24
mutation in the Aristaless related homeobox X-
chromosome linked gene

Two-point linkage allowed mapping of the MRX87 locus
to DXS987 marker in the Xp22-p21 interval. A maximum
two point LOD score of 2.43 with no recombination was
obtained for three adjacent markers in Xp22-Xp21.1
(DXS207, DXS8019, DXS1226; Figure 1 and Table 2). A
double crossover was observed in the patient IV:13 defin-
ing the interval between the telomeric (DXS987-DXS207)
and the centromeric (DXS1061-DXS1214) markers in
which the disease gene was located (Figure 1).

This region contains the ARX gene, that is, after FMR1I, the
most frequently mutated gene in syndromic and non syn-
dromic X-linked mental retardation [4,5,7]. Therefore, we
sequenced ARX in the patients of MRX87 family for whom
genomic DNA was available. After PCR analysis of the
coding exons, the products were directly sequenced. We
detected a 24-bp in frame duplication in exon 2,
(c.428_451dup24 also known as ARXdup24) resulting in
the duplication of nucleotides 428-451 (5'-
GCCGCCGCGGC AGCCGCGGCCGLG-3; in GenBank
Accession Number NM 139058; Figure 3). The
ARXdup24 is the most frequent MR mutation found in the
ARX gene [7]. This duplication is an in frame expansion of
the second poly-alanine tract of the ARX protein (amino
acids 144-155) from 12 to 20 alanines (Figure 3). The
ARXdup24 was found in all MRX87 male patients (II:5,
II:5, MI:10, MI:13 and II:14) and was absent in the
healthy men (III:4 and III:9). The obligate carriers (I1:4,
I1:6, 111:7) and at risk-women (II:3, III:6 and IV:12) were
also tested. The ARXdup24 was present in all obligate car-
riers and in II:3, while III:6 and 1V:12 did not inherit the
mutation (Figure 1). Testing was also performed for indi-
vidual III:2 because of her mother's status (II:3), ascertain-
ing the absence of c.428_451dup24.

Individual Age Mental handicap Minor anomalies Behavior MRIICT scan OCF
11:5 67y Severe Pyramidal Hypotonia; Demential syndrome Normal 52 cm
Bilateral Babinski sign;
Deficit of the VII cranial nerve;
Urinary incontinence;
Neurosensorial hypoacusis
1n:10 40y Severe Flatfoot Nd Cerebellar tonsils below the 56 cm
level of the foramen magnum;
Wide subarachnoid spaces
1vV:13 22y Moderate Flatfoot; Nd Normal 53 cm
Urinary incontinence
1v:14 16y Moderate Sialorrhoea; Language deficit Normal 54 cm
Flatfoot
OCF = Occipital Circumference; Head and neck MRA — Sag T1, axial FLAIR, axial FSE T2. Nd = not determined.
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II:5 II1:10
IV:13 IV:14
Figure 2

Affected men of MRX87 family with c.428_451dup24 in ARX gene. No consistent facial features are present among the
patients.

Table 2: Two-point LOD scores analysis across the markers DXS7140 and DXS1214 linking MRX87 family to Xp22-p21 interval

Marker 0.0%* 0.01 0.05 0.1 0.2 0.3 0.4

DXS7104 -2.94 0.02 0.59 0.73 0.69 0.51 0.27
DXSs987 1.75 1.72 1.59 1.43 1.09 0.73 0.36
DXS207 243 2.38 222 2.00 1.54 1.04 0.52
DXs8019 2.35 231 2.15 1.94 1.50 1.02 0.52
DXS1226 2.35 231 2.15 1.94 1.50 1.02 0.52
DXS8099 1.75 1.72 1.59 1.43 1.09 0.73 0.36
DXs1061 0.35 0.34 0.30 0.26 0.16 0.08 0.02
DXs1214 -7.31 0.31 0.87 0.99 0.90 0.66 0.35

* Recombination fraction.
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At the top of the figure: Electropherogram of amplicon b of the ARX exon 2 in MRX87 IV:14. The box indicates the nucleotide
sequence duplicated in the ARX gene (c.428_451dup24 also known as ARXdup24). At the bottom of the figure: ARX protein
functional domains and polyA tracts are shown, next to the various mutations that results in a spectrum of developmental
brain phenotypes. *[10], #[13], °[14], ~[19], §[27], X[30], #[31], $[32], &[33].

X inactivation analysis (XCI) was performed in the leuko-
cytes of four MRX87 carrier women (II:3, II:4, II:6 and
III:7). We analysed the methylation status of the CpG
islands of the AR gene, using the human Androgen Receptor
gene fluorescent assay (HUMARA) and excluded the pres-
ence of skewed XClI in carrier women (Figure 1). This find-
ing is not completely unexpected because most of the
mutations that impair neurocognitive functioning do not
confer a selective advantage in leukocytes, as in the case of
individuals with Rett syndrome [25], or with Incontinen-
tia Pigmenti [26]. Moreover, X-inactivation was measured
in cells of an unaffected tissue (blood) but XCI may be dif-
ferent in the brain or at a critical time during brain devel-
opment.

Discussion

This report describes the clinical and molecular findings
of an Italian family with the ARXdup24 mutation
(c.428_451dup24). We linked a new MRX condition,

MRX87, to Xp22-Xp21 interval. This is one of the three
hot spot regions for X-linked mental retardation contain-
ing ARX, a gene prominently mutated in both syndromic
and non syndromic cognitive impairments. By sequenc-
ing its coding region in the affected MRX87 males, we
identified the recurrent mutation ¢.428_451dup24 |[7].
This is a duplication of 24 bp in exon 2 that leads to an
expansion of the second polyalanine tract (polyA_II) in
the ARX protein, from 12 to 20. As far as we know, there
are at least 30 published families with c.428_451dup24
showing different clinical presentations including a mild
MR to severe MR. Sometimes MR is observed alone, but
more often, it is accompanied by a combinations of dys-
tonia, autism, spinocerebellar ataxia, and seizures (Table
3). To this regard, the clinical evaluation of the MRX87
family contributed new elements that enrich the disease
spectrum associated to ARX mutations. Indeed, patients
from our family displayed novel distinctive phenotypical
features with a marked clinical intra-variability and varia-
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ble expression. In particular, a congenital hindbrain her-
nia, namely Arnold-Chiari like-malformation, was
diagnosed in patient III:10. Chiari malformations are
composed of a combination of brain stem and cerebellum
anomalies. Among the families affected by ARXdup24,
one was recently described with a boy who, apart from
MR, also had a series of congenital anomalies including
encephalocele [27], a neurological defect that may occur
in association with Arnold-Chiari malformations [28].
Both malformations may be classified as failure of separa-
tion of neuro-ectodermal elements from the neural crest
[29].

The ARXdup24 underlies only a part of the complex phe-
notypic spectrum of ARX mutations. We can distinguish
three groups of ARX mutations with different outcomes
(Figure 3) [10-14,19,27,30-33]: 1. severe mutations caus-
ing severe brain patterning malformations due to altera-
tions of the DNA binding domains (HD and Aristaless); 2.
expansion in the polyA_I motif causing familial ISSX phe-
notypes; 3. expansion in the polyA_II motif
(c.428_451dup24) causing a spectrum of XLMR condi-
tions with huge inter- and intra-familial heterogeneity.
With the exception of the severe ARX alterations classified
as "loss of function", we cannot establish the functional
effect of the polyA expansion mutations. Indeed, in vitro
data, obtained for only the polyA_I motif, are still contro-
versial [34,35] and no transgenic mice has been produced
for each polyA mutation. On the other hand because ARX
expansions in both motifs cause varying degree of MR in
humans, the functions of the polyA tracts in the ARX pro-
tein could be related to the complexity of brain functions
such as those controlling memory and learning.

http://www.biomedcentral.com/1471-2350/8/25

Conclusion

In conclusion, the identification of a new MRX family
linked to Xp22 and carrying the c¢.428_451dup24
(ARXdup24) underlines the high contribution of ARX to
X linked mental retardation. Furthermore, the clinical
findings of the affected members of the MRX87 family
enhance the striking phenotypic variability associated
with polyA_II expansion.
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Table 3: Summary of clinical data observed in other ARXdup24 families

Families Mental handicap Minor anomalies Behavior MRIICT scan References
MRX54 Moderate to profound  Long face, thin lips, large ears, Aggressive Normal [14]
epilepsy
P73-MRX Moderate No Language deficit Normal [14]
P49-MRX Moderate Dystonia Language deficit, Normal [14]
hyperkinesia
MRX36 Moderate to severe No Normal Normal [14]
MRX43 Moderate to severe Obesity, large head, epilepsy Normal ND [14]
MRX76 Moderate Wolff-Parkinson- White Depressive and ND [14]
psychotic features
P34-MRX Severe General developmental delays, Language deficit Normal [6]
dystonic hand movements
P104-MRX Severe No No Normal [6]
P106-MRX Moderate No Severe language Normal [6]
development delay
T37-MRX Severe Long chin and deep-set eyes, Learning and walking Normal [6]
strabismus, neonatal hypotonia difficulties
ARX family Severe Hypertelorism, broad nasal Psychomotor delay Transsphenoidal encephalocele [27]
root, cleft upper lip, growth and agenesis of corpus callosum
hormone deficiency (ACC) and hypopituitarism
ND = not determined.
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