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Abstract
Background: The nuclear receptor NR4A1 is implicated in metabolic regulation in insulin-sensitive tissues, such as liver, 
adipose tissue, and skeletal muscle. Functional loss of NR4A1 results in insulin resistance and enhanced intramuscular 
and hepatic lipid content. Therefore, we investigated in a cohort of white European subjects at increased risk for type 2 
diabetes whether genetic variation within the NR4A1 gene locus contributes to prediabetic phenotypes, such as insulin 
resistance, ectopic fat distribution, or β-cell dysfunction.

Methods: We genotyped 1495 subjects (989 women, 506 men) for five single nucleotide polymorphisms (SNPs) 
tagging 100% of common variants (MAF = 0.05) within the NR4A1 gene locus with an r2 = 0.8. All subjects underwent 
an oral glucose tolerance test (OGTT), a subset additionally had a hyperinsulinemic-euglycemic clamp (n = 506). 
Ectopic hepatic (n = 296) and intramyocellular (n = 264) lipids were determined by magnetic resonance spectroscopy. 
Peak aerobic capacity, a surrogate parameter for oxidative capacity of skeletal muscle, was measured by an incremental 
exercise test on a motorized treadmill (n = 270).

Results: After appropriate adjustment and Bonferroni correction for multiple comparisons, none of the five SNPs was 
reliably associated with insulin sensitivity, ectopic fat distribution, peak aerobic capacity, or indices of insulin secretion 
(all p ≥ 0.05).

Conclusions: Our data suggest that common genetic variation within the NR4A1 gene locus may not play a major role 
in the development of prediabetic phenotypes in our white European population.

Background
In addition to peripheral insulin resistance and pancre-
atic beta-cell dysfunction, type 2 diabetes mellitus is also
characterized by aberrant hepatic gluconeogenesis.
cAMP response element-binding protein (CREB), a key
regulator of hepatic gluconeogenesis, mediates its actions
through transcriptional induction of the nuclear hor-
mone receptor coactivator PGC-1α (peroxisome prolifer-
ator-activated (PPAR)-γ coactivator-1α). Recently, CREB-
induced activation of the NR4A orphan nuclear receptor
family, including the three highly homologous isotypes,
NR4A1, NR4A2, and NR4A3 (also known as Nur77,

Nurr1, and Nor1), has been identified as a novel PGC-1α-
independent mechanism for regulating hepatic gluconeo-
genesis [1]. The same nuclear receptors are also impli-
cated in metabolic regulation in other insulin-sensitive
tissues. NR4A1 inhibits adipocyte differentiation and reg-
ulates expression of genes linked to glucose metabolism
in skeletal muscle [2,3]. In a very recent study, functional
loss of NR4A1 was reported to result in exacerbated insu-
lin resistance in both skeletal muscle and liver and to
increase intramuscular and hepatic lipid content upon
high-fat diet [4].

In light of these data, NR4A1 appears to be an attractive
prediabetes candidate gene. Therefore, we studied the
impact of common genetic variation within the NR4A1
gene locus on prediabetes phenotypes, including insulin
resistance, ectopic fat distribution, and, as we have
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recently found an association between common poly-
morphisms within the NR4A3 locus and insulin release
[5], also β-cell dysfunction.

Methods
Subjects
The 1495 non-diabetic white subjects at increased risk of
type 2 diabetes mellitus were recruited from the southern
part of Germany and participated in an ongoing study on
the pathophysiology of type 2 diabetes [6]. All subjects
were metabolically characterized by an oral glucose toler-
ance test (OGTT). In randomly selected subgroups, a
hyperinsulinemic-euglycemic clamp was performed,
intramyocellular lipids (IMCL) and intrahepatic lipids
were determined by magnetic resonance spectroscopy
(MRS), peak aerobic capacity, a surrogate parameter for
oxidative capacity of skeletal muscle, was measured using
an incremental exercise test on a motorized treadmill
(Saturn; HP-Cosmos, Traunstein, Germany) [6]. Partici-
pants gave informed written consent to the study. The
protocol was approved by the local ethical committee.

Genotyping
Using the publically available phase II data of the Interna-
tional HapMap Project derived from a population of Utah
residents with ancestry from northern and western
Europe (release #24 November 2008, http://www.hap-
map.org/index.html.en), we screened in silico the com-
plete NR4A1 gene locus spanning 15,798 bases from
nucleotide 50,723,763 to nucleotide 50,739,552 (7 exons,
located on human chromosome 12q13) as well as 5 kb of
its 5'-flanking region and 3 kb of its 3'-flanking regions.
Among thirteen informative single nucleotide polymor-
phisms (SNPs), the five SNPs rs2242107 C/T, rs1283155
C/T, rs744690 T/G, rs2603751 A/G (all located in non-
coding regions of the gene locus), and rs2701124 C/T
(located in the coding region resulting in a synonymous
substitution) were chosen (Additional File 1), covering
100% of common variants (minor allele frequency [MAF]
= 0.05) within the NR4A1 gene with an r2 = 0.8, according
to Tagger analysis http://www.broad.mit.edu/mpg/tag-
ger. Genotyping was performed using the TaqMan assay
(Applied Biosystems, Foster City, CA). The overall geno-
typing success rate was 99.8% (all SNPs 100%, except for
rs1283155: 99.1%), and rescreening of 3% of subjects gave
100% identical results. Genotypes were verified in a ran-
dom sample of 50 subjects by bidirectional sequencing.

Statistical analyses
In order to approximate normal distribution, loge-trans-
formation of the following metabolic variables was per-
formed prior to simple and multivariate linear regression
analyses: body mass index, waist circumference, fasting
glucose, glucose at 120 min. during OGTT, homeostasis

model assessment of insulin resistance (HOMA-IR),
OGTT- and clamp-derived insulin sensitivity index (ISI),
the ratio of area under the curve (AUC) insulin to AUC
glucose at 30 min. during OGTT, the ratio of AUC C-
peptide to AUC glucose during OGTT, insulinogenic
index, hepatic lipids, intramyocellular lipids (IMCL) in
tibialis anterior and soleus muscles, and peak aerobic
capacity. In multivariate linear regression models, the
trait was chosen as dependent variable, and gender, age,
body mass index (BMI), and genotype were tested as
independent variables. To account for the number of
SNPs analysed (n = 5), a Bonferroni-corrected α-level of p
< 0.01 was considered statistically significant. Bonferroni
correction was not performed for the number of traits
given that the traits were interrelated. The statistical soft-
ware package JMP 7.0 (SAS Institue, Cary, NC) was used.
Hardy-Weinberg equilibrium was tested using the χ2 test.
The effect sizes detectable in the different cohorts under-
going an OGTT, a hyperinsulinemic-euglycemic clamp,
and MRS were ≥ 8%, ≥ 14%, and ≥ 18% in the additive
model and ≥ 20%, ≥ 36%, and ≥ 43% in the dominant
model, respectively. Power calculation was performed in
the additive inheritance model by F-tests and in the dom-
inant inheritance model by two-tailed t-tests (1-β>0.8)
using G*power software available at http://www.psy-
cho.uni-duesseldorf.de/aap/projects/gpower/.

Results
Characterization and genotyping of the study population
Characteristics of the 1495 genotyped non-diabetic sub-
jects (989 women, 506 men) from the southwest of Ger-
many are shown in Additional File 2. The five NR4A1
SNPs were in Hardy-Weinberg equilibrium (all p > 0.5).
The observed and the HapMap genotype distributions as
well as linkage disequilibrium (LD) statistics are shown in
Additional File 1 and Additional File 3, respectively.

Associations between NR4A1 SNPs and metabolic traits
After appropriate adjustment and Bonferroni correction
for multiple comparisons, the five NR4A1 SNPs were not
significantly associated with insulin sensitivity, indices of
insulin secretion, ectopic fat distribution, or peak aerobic
capacity (Tables 1 and 2, Additional Files 4 and 5), except
for an association between rs1283155 and glucose at 120
min. of the OGTT in the additive inheritance model (p =
0.0078). However, in the dominant model, this associa-
tion was no longer significant (p = 0.0153). Furthermore,
no allele dose effect was seen with this association.

Discussion
Genotyping of a metabolically well-characterized popula-
tion for NR4A1 SNPs revealed no reliable association of
this gene locus with insulin sensitivity, insulin secretion,
or ectopic fat distribution. For some traits, e.g., IMCL or
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Table 1: Associations of NR4A1 SNPs rs744690, rs2603751, and rs2242107 with metabolic parameters (n = 1495).

SNP rs744690 rs2603751 rs2242107

Genotype TT TG GG Padd. Pdom. AA AG GG Padd. Pdom. CC CT TT Padd. Pdom.

N 1066 384 39 - - 1156 313 20 - - 769 589 131 - -

BMI (kg/m2) 28.4 ± 8.1 28.4 ± 7.5 28.3 ± 7.4 0.8 0.6 28.5 ± 7.9 28.8 ± 8.2 29.6 ± 11.1 0.8 0.5 28.6 ± 7.9 28.4 ± 7.9 29.2 ± 8.8 0.7 0.9

Waist circumference (cm) 93 ± 17 94 ± 17 92 ± 15 0.7 0.9 94 ± 17 94 ± 18 91 ± 20 0.9 0.9 94 ± 17 93 ± 17 95 ± 18 0.4 0.4

Glucose, fasting (mM) 5.09 ± 0.55 5.10 ± 0.55 5.15 ± 0.54 0.8 0.5 5.10 ± 0.55 5.07 ± 0.54 4.96 ± 0.53 0.3 0.2 5.11 ± 0.56 5.07 ± 0.54 5.12 ± 0.53 0.7 0.4

Glucose, 120 min. OGTT (mM) 6.28 ± 1.65 6.11 ± 1.67 6.47 ± 1.73 0.14 0.08 6.24 ± 1.67 6.25 ± 1.63 6.09 ± 1.46 0.9 1.0 6.29 ± 1.68 6.17 ± 1.62 6.25 ± 1.68 0.4 0.15

HOMA-IR (U) 2.44 ± 2.11 2.36 ± 2.20 2.47 ± 2.73 0.8 1.0 2.42 ± 2.16 2.40 ± 2.12 2.78 ± 2.33 0.5 0.4 2.49 ± 2.13 2.28 ± 2.07 2.65 ± 2.57 0.06 0.06

ISI, OGTT (U) 16.7 ± 11.1 16.6 ± 10.3 15.4 ± 7.7 0.9 0.7 16.6 ± 10.9 16.6 ± 10.7 15.4 ± 11.1 0.7 0.7 16.4 ± 11.0 17.1 ± 10.8 15.7 ± 9.8 0.13 0.08

ISI, clamp (U)# 0.086 ± 0.053 0.086 ± 0.061 0.081 ± 0.040 0.9 0.6 0.086 ± 0.054 0.088 ± 0.058 0.046 ± 0.013 0.3 0.4 0.086 ± 0.054 0.085 ± 0.054 0.085 ± 0.064 0.7 0.8

AUC Ins [30 min.]/AUC glc [30 min.] 
(pM/mM)

40.5 ± 29.7 40.8 ± 32.0 35.2 ± 18.2 0.6 0.5 40.4 ± 29.1 40.0 ± 33.4 47.5 ± 29.4 0.2 0.3 41.0 ± 30.2 38.8 ± 27.5 44.1 ± 39.0 0.8 0.9

AUC C-pep/AUC glc (pM/mM) 317 ± 104 324 ± 117 304 ± 82 0.7 0.5 317 ± 106 324 ± 111 325 ± 111 0.6 0.3 318 ± 105 317 ± 106 331 ± 121 0.5 0.4

Insulinogenic index (pM/mM) 50.5 ± 40.5 51.8 ± 43.5 42.2 ± 22.8 0.7 0.4 50.6 ± 39.7 49.9 ± 45.4 58.6 ± 36.0 0.4 0.5 51.2 ± 41.4 48.7 ± 37.1 55.7 ± 52.6 0.6 0.8

Raw data are presented and given as means ± SD. For statistical analysis, data were loge-transformed. AUC Insulin [30 min.]/AUC glc [30 min.], AUC C-pep/AUC glc, and insulinogenic index were adjusted for gender, age, BMI, 
and ISI-OGTT. Fasting glucose, glucose at 120 min. of the OGTT, HOMA-IR, ISI-OGTT, and ISI-clamp were adjusted for gender, age, and BMI. BMI and waist circumference were adjusted for gender and age. AUC - area under the 
curve; BMI - body mass index; C-pep - C-peptide; glc - glucose; HOMA-IR - homeostasis model assessment of insulin resistance; ISI - insulin sensitivity index; OGTT - oral glucose tolerance test; p>add. - p-value in the addidtive 
inheritance model; pdom. - p-value in the dominant inheritance model; SNP - single nucleotide polymorphism; U - units. #N = 506.
Insulinogenic index was assessed as the ratio of (insulin at 30 min. of the OGTT - fasting insulin) to glucose at 30 min. of the OGTT.
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Table 2: Associations of NR4A1 SNPs rs2701124 and rs1283155 with metabolic parameters (n = 1495).

SNP rs2701124 rs1283155

Genotype CC CT TT Padd. Pdom. CC CT TT Padd. Pdom.

N 1242 239 8 - - 885 507 83 - -

BMI (kg/m2) 28.5 ± 7.8 29.0 ± 8.6 32.3 ± 16.1 0.5 0.3 28.7 ± 8.2 28.5 ± 7.7 28.3 ± 7.7 0.8 0.6

Waist circumference (cm) 94 ± 17 93 ± 19 93 ± 28 1.0 0.8 94 ± 18 94 ± 17 93 ± 16 0.9 0.8

Glucose, fasting (mM) 5.10 ± 0.55 5.06 ± 0.54 5.11 ± 0.64 0.6 0.3 5.10 ± 0.55 5.10 ± 0.56 5.04 ± 0.48 0.4 0.7

Glucose, 120 min. OGTT (mM) 6.25 ± 1.66 6.22 ± 1.64 5.94 ± 1.75 0.7 0.7 6.32 ± 1.67 6.07 ± 1.62 6.46 ± 1.66 0.0078 0.01
53

HOMA-IR (U) 2.41 ± 2.11 2.47 ± 2.35 2.68 ± 1.82 0.5 0.2 2.51 ± 2.30 2.31 ± 1.87 2.25 ± 2.28 0.3 0.17

ISI, OGTT (U) 16.6 ± 10.9 16.7 ± 10.5 16.1 ± 13.2 0.7 0.4 16.3 ± 10.7 16.9 ± 10.9 17.1 ± 10.9 0.2 0.08

ISI, clamp (U)# 0.086 ± 0.054 0.087 ± 0.058 0.054 ± 0.001 0.8 0.5 0.084 ± 0.052 0.089 ± 0.061 0.090 ± 0.046 0.7 0.9

AUC Insulin [30 min.]/AUC glc [30 min.] 
(pM/mM)

40.2 ± 29.0 41.4 ± 35.5 44.9 ± 23.8 0.9 0.6 41.3 ± 30.8 39.7 ± 28.4 37.8 ± 34.0 0.7 0.8

AUC C-pep/AUC glc (pM/mM) 317 ± 106 329 ± 113 312 ± 72 0.2 0.10 320 ± 103 320 ± 113 304 ± 108 0.6 0.9

Insulinogenic index (pM/mM) 50.3 ± 39.4 52.1 ± 48.4 56.1 ± 32.8 0.9 0.7 51.5 ± 41.7 50.0 ± 39.3 46.7 ± 44.6 0.8 0.6

Raw data are presented and given as means ± SD. For statistical analysis, data were loge-transformed. AUC Insulin [30 min.]/AUC glc [30 min.], AUC C-pep/AUC glc, and insulinogenic index were 
adjusted for gender, age, BMI, and ISI-OGTT. Fasting glucose, glucose at 120 min. of the OGTT, HOMA-IR, ISI-OGTT, and ISI-clamp were adjusted for gender, age, and BMI. BMI and waist circumference 
were adjusted for gender and age. AUC - area under the curve; BMI - body mass index; C-pep - C-peptide; glc - glucose; HOMA-IR - homeostasis model assessment of insulin resistance; ISI - insulin 
sensitivity index; OGTT - oral glucose tolerance test; padd. - p-value in the addidtive inheritance model; pdom. - p-value in the dominant inheritance model; SNP - single nucleotide polymorphism; U 
- units. # ISI (clamp) data were available from 506 subjects.
Insulinogenic index was assessed as the ratio of (insulin at 30 min. of the OGTT - fasting insulin) to glucose at 30 min. of the OGTT.
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liver fat content, our study was sufficiently powered to
detect only moderate effect sizes. Therefore, the lack of
association between NR4A1 gene variants and ectopic fat
distribution has to be ultimately ruled out in larger stud-
ies with comparable measurements, such as magnetic
resonance imaging (MRI) or computed tomography
(CT). In line with this, recent genome-wide association
studies showed that large cohorts are required to detect
small effect sizes of diabetic traits, such as fasting glucose
and insulin [7]. Furthermore, given that only SNPs with a
MAF greater than 5% were chosen, we cannot exclude
that rarer variants may be associated with prediabetic
phenotypes.

Conclusions
In conclusion, our data suggest that common variation
within the NR4A1 gene locus may not play a major role in
the development of prediabetic phenotypes, such as insu-
lin resistance, β-cell dysfunction, or disproportionate fat
distribution, in our white European population at an
increased risk for type 2 diabetes.

Additional material
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