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Abstract
Background: The identification of genetic variants related to blood lipid levels within a large, population-based and 
nationally representative study might lead to a better understanding of the genetic contribution to serum lipid levels 
in the major race/ethnic groups in the U.S. population.

Methods: Using data from the second phase (1991-1994) of the Third National Health and Nutrition Examination 
Survey (NHANES III), we examined associations between 22 polymorphisms in 13 candidate genes and four serum 
lipids: high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), 
and triglycerides (TG). Univariate and multivariable linear regression and within-gene haplotype trend regression were 
used to test for genetic associations assuming an additive mode of inheritance for each of the three major race/ethnic 
groups in the United States (non-Hispanic white, non-Hispanic black, and Mexican American).

Results: Variants within APOE (rs7412, rs429358), PON1 (rs854560), ITGB3 (rs5918), and NOS3 (rs2070744) were found to 
be associated with one or more blood lipids in at least one race/ethnic group in crude and adjusted analyses. In non-
Hispanic whites, no individual polymorphisms were associated with any lipid trait. However, the PON1 A-G haplotype 
was significantly associated with LDL-C and TC. In non-Hispanic blacks, APOE variant rs7412 and haplotype T-T were 
strongly associated with LDL-C and TC; whereas, rs5918 of ITGB3 was significantly associated with TG. Several variants 
and haplotypes of three genes were significantly related to lipids in Mexican Americans: PON1 in relation to HDL-C; 
APOE and NOS3 in relation to LDL-C; and APOE in relation to TC.

Conclusions: We report the significant associations of blood lipids with variants and haplotypes in APOE, ITGB3, NOS3, 
and PON1 in the three main race/ethnic groups in the U.S. population using a large, nationally representative and 
population-based sample survey. Results from our study contribute to a growing body of literature identifying key 
determinants of plasma lipoprotein concentrations and could provide insight into the biological mechanisms 
underlying serum lipid and cholesterol concentrations.

Background
Decades of research have demonstrated that serum con-
centrations of blood lipids are associated with increased
risk for cardiovascular disease and mortality [1-4]. Previ-
ous reports from the Framingham Heart Study suggested
a strong positive relationship between coronary heart dis-
ease and elevated levels of total cholesterol (TC) and low-
density lipoprotein cholesterol (LDL-C) levels, in addi-
tion to an inverse relationship between the disease and

high-density lipoprotein cholesterol (HDL-C) levels [5-8].
The genetic basis for elevation in lipid levels is not well
understood, but substantial heritability has been demon-
strated in twin [9] and family-based [10-12] studies,
which have estimated that approximately 43% to 83% of
the variance in blood lipid and lipoprotein levels is attrib-
utable to genetic factors. Recent candidate gene studies
[13-16], as well as genome-wide association studies [17-
25], have identified polymorphisms that account for a
portion of the variation in blood lipid levels.

Many genes involved in metabolic pathways have been
found to contribute to lipid level variability [14,26,27].
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However, conflicting findings are common among
genetic association studies. Inconsistencies might be
caused by differences in study design, study populations
(geographic and ethnic background), statistical methods
and power, allele frequencies, and gene-environment
interactions. It is not clear if such findings are generaliz-
able to the U.S. population. To assess genetic variation
among racial and ethnic groups in the U.S. population, we
need genetic information from a large, well-designed, and
population-based U.S. survey, such as the Third National
Health and Nutrition Examination Survey (NHANES III)
that includes the three major race/ethnic groups. There-
fore, we sought to investigate the associations between 22
polymorphisms in 13 candidate genes and serum lipid
concentrations using data from the NHANES III, a
nationally-representative survey of the U.S. population.

Methods
Study population
NHANES III is a multi-stage complex probability survey
conducted from 1988 to 1994 by the National Center for
Health Statistics (NCHS) of the Centers for Disease Con-
trol and Prevention (CDC) [28,29]. The survey was
designed to provide nationally representative statistics on
the civilian, non-institutionalized U.S. population aged 2
months or older. A DNA bank was created from blood
samples collected during the second phase of NHANES
III (1991-1994) from participants aged 12 years or older.
This DNA bank provided one of the first opportunities to
assess genetic variation among major racial and ethnic
groups using a well-designed, population-based, and
nationally representative sample of the U.S. population.
The bank contains specimens from 7,159 participants,
62% of whom originated from households containing
multiple family members (mean: 1.59 participating mem-
bers per household; range 1-11). More information on the
DNA bank is available on the NCHS Web site [30].

We combined genetic data with behavioral, environ-
mental, and clinical information available in NHANES
III. We restricted our analyses to participants aged 17
years or older (n = 6,317). Of these, we included only
those who self reported as non-Hispanic white, non-His-
panic black, or Mexican American (n = 6,016), who had
their blood drawn in the morning (n = 2,712), who fasted
at least 9 hours (n = 2,488), and who did not take choles-
terol-lowering medications (n = 2,413). This study was
approved by the NCHS Ethics Review Board.

Selection of polymorphisms
We tested 22 polymorphisms in 13 candidate genes that
were chosen from a set of variants that we previously gen-
otyped in the NHANES III DNA Bank [31], including
polymorphisms in ABCB1, ADH1C, ADRB2, ADRB3,
APOE, ITGB3, MTHFR, MTRR, NOS3, SERPINE1,

PON1, PPARG, and TNF (Additional file 1, Table S1). The
candidate genes included in this current study were iden-
tified from systematic literature reviews on previously
published associations with blood lipid levels, chosen
based on the biology of the disease locus in relation to the
outcomes, or chosen based on prior linkage studies.
Information on the nucleotide or amino acid change for
each variant is included in Additional file 1, Table S1.

Genotyping methods
All genotypes were analyzed using TaqMan (Applied Bio-
systems, Foster City, California) or MGB Eclipse (Nano-
gen, Bothell, Washington) assays. Polymorphisms that
passed blind-replicate analyses (≥ 98% of genotypes
matched) were tested for deviation from Hardy-Wein-
berg proportions (HWP) using standard chi-square
goodness-of-fit tests. Variants that deviated from HWP
at p < 0.01 for at least two of the three included race/eth-
nic groups (i.e., non-Hispanic white, non-Hispanic black,
and Mexican American) were excluded from further
analysis. Detailed genotyping methods and quality con-
trol criteria have been previously described [31] or can be
obtained from NCHS (in the case of APOE).

Laboratory measures and phenotype definitions
Details of the blood collection procedures and the labora-
tory evaluation of LDL-C, HDL-C, TC, and TG are avail-
able online [32]. Serum LDL-C was calculated using the
Friedewald equation [33]. Participants who did not fast,
who fasted fewer than 9 hours, or who had TG levels
greater than 400 mg/dL were excluded in the analyses.

Phenotypic covariates included in the analyses were
previously reported to be associated with blood lipid lev-
els [34]. In non-genetic models, age and body mass index
(BMI) were both strongly associated with blood lipid con-
centrations within each race/ethnic group (Additional file
1, Table S2). The remaining risk factors were significantly
associated with at least one lipid measured in at least one
race/ethnic group. The covariates included in the final
models were: age (17-39 years, 40-59 years, or ≥ 60 years);
sex; education completed (less than high school, high
school, or college and above); alcohol intake (none, <4
drinks per week, ≥ 4 drinks per week); smoking status
(current smoker, former smoker, non-smoker); BMI;
physical activity [none, low (active <5 times per week), or
high (active ≥ 5 times per week)]; and log of total fat
intake (g/day, reported in a dietary recall from the previ-
ous 24-hour period).

Statistical analysis
All analyses were performed using SAS-Callable
SUDAAN 9.01 (Research Triangle Institute, Research
Triangle Park, North Carolina) and SAS 9.1 (SAS Insti-
tute, Cary, North Carolina) to account for the NHANES
III complex sampling design. For each genetic variant,
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univariate and multivariable regression models were used
to test for genetic associations with each blood lipid mea-
surement, stratified by self-reported race/ethnicity. Inter-
action between each variant and race/ethnicity was
examined to test racial/ethnic differences in the genetic
effects. We assumed an additive model of inheritance and
used regression analyses to test the null hypothesis that
LDL-C, HDL-C, TC, or TG levels did not differ by an
increasing number of minor alleles. Beta-coefficient esti-
mates and 95% confidence intervals for each variant were
calculated in regression models using sample weights that
were recalculated for the NHANES III DNA bank data.
TG levels were log-transformed to approximate a normal
distribution.

Haplotype analysis was also performed for each of the
seven genes for which at least two polymorphisms were
genotyped: ADH1C, ADRB2, APOE, MTHFR, NOS3,
PON1, and TNF. Haplotype frequencies were inferred
within each racial/ethnic group using the Expectation-
Maximization algorithm [35,36] available in the HAPLO-
TYPE procedure in SAS/Genetics. The inferred haplo-
types with rare frequency (<1%) were combined into one
variable ("other"). Haplotype trend regression analyses
[37,38] were conducted using crude and multivariable
regression models, as described above.

For both the single variant analyses and haplotype anal-
yses, the p-value from Satterthwaite statistics was
adjusted to control the false discovery rate (FDR) [39], a
method for correcting for multiple testing, in each of the
three race/ethnic groups separately. An association was
considered significant at an FDR-adjusted p-value of <
0.05.

We used Quanto (University of Southern California,
Los Angeles, California; http://hydra.usc.edu/gxe/) to
estimate the power of our study. Assuming additive
genetic models, we determined the beta-coefficients that
correspond to a genetic variant explaining 1% of the vari-
ation in the lipid measurements for allele frequencies
ranging from 0.01 to 0.5. For these beta-coefficients and
allele frequencies, we calculated the lower and upper lim-
its of our power which account for our multiple testing
adjustments using the effective sample sizes (sample sizes
multiplied by a design effect of 1.2 to account for the
complex sampling design of NHANES III) of the three
race/ethnicities.

Results
Characteristics of the participants included in this study
are described in Table 1. Non-Hispanic whites (n = 989)
were the oldest, had obtained higher levels of education,
and were the most physically active compared to non-
Hispanic blacks and Mexican Americans. Non-Hispanic
blacks (n = 683) were least likely to have consumed any
alcoholic drinks in the past week, were most likely to be

current smokers, and had the highest mean body mass
index (BMI). Mexican Americans (n = 741) were the
youngest, had the highest proportion of male partici-
pants, and were the least likely to smoke. Blood lipid lev-
els were also significantly different (at p < 0.05) across the
three main race/ethnic groups. Non-Hispanic blacks
tended to have the highest HDL-C levels compared with
non-Hispanic whites and Mexican Americans. In con-
trast, non-Hispanic whites had the highest LDL-C and
TC levels; whereas, Mexican Americans had the highest
serum triglycerides levels.

Allele frequencies for the study variants among the
three racial/ethnic groups in the U.S. population are
available in Additional file 1, Table S1. Each genetic vari-
ant was tested for association with each of the four blood
lipid measurements. Table 2 lists the genetic variants with
significant associations ((false-discovery rate (FDR)-
adjusted p-value < 0.05)) in at least one race/ethnic group
for the crude or adjusted regression models. Complete
results for all studied variants, with and without FDR
adjustment of p-values, are available in Additional file 1,
Table S3a-d (crude analyses) and Table S4a-d (covariate-
adjusted analyses). The FDR-adjusted and unadjusted p-
values for testing racial/ethnic differences in the genetic
effects (SNP × race/ethnicity interaction) are also
included in these Additional Tables. In fasting samples
from non-Hispanic whites, none of the studied variants
were found to be significantly associated with any blood
lipids after adjustment for multiple testing. For non-His-
panic blacks, APOE rs7412 was strongly associated with
both LDL-C and TC in crude and adjusted analyses. We
observed that several polymorphisms were significantly
associated with blood lipids in the Mexican American
population, including: PON1 rs854560 with HDL-C in
both crude and adjusted analyses; APOE rs7412 and
rs429358 with LDL-C and TC in adjusted analyses; and
NOS3 rs1799983 with LDL-C in adjusted models only.
None of the 22 polymorphisms were found to be associ-
ated with triglyceride levels except for ITGB3 rs5918 in
non-Hispanic blacks.

Haplotypes with significant associations with blood lip-
ids in at least one race/ethnic group in crude or adjusted
models are listed in Table 3. Complete results are
included in Additional file 1, Tables S5a-d (crude analy-
ses) and S6a-d (covariate-adjusted analyses). In the three
race/ethnic groups, all polymorphisms within a gene
were in linkage disequilibrium (p < 0.05 from linkage dis-
equilibrium test; data not shown). Consistent with the
results of the individual polymorphisms, haplotypes
within three genes (APOE, NOS3, and PON1) were found
to be significantly associated (FDR-adjusted p < 0.05)
with blood lipid levels. In non-Hispanic whites, the only
significant associations found were for the A-G haplotype
of PON1 in relation to elevated LDL-C in crude and
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adjusted models. Among non-Hispanic blacks, an inverse
association was found in crude and adjusted analyses
between the T-T (ε2 isoform) haplotype of APOE and
LDL-C (p ≤ 0.0010 for both) and TC (p = 0.052 for crude;
p = 0.0020 for adjusted). In Mexican Americans, haplo-
types of PON1 (A-A and A-G) were significantly associ-
ated with elevated HDL-C; and NOS3 haplotype T-T was

significantly associated with decreased levels of LDL-C.
In addition, carriers of the APOE C-C (ε4 isoform) haplo-
type had significantly increased LDL-C (borderline sig-
nificant in crude model and strongly significant in
adjusted model) and TC (in the adjusted model);
whereas, APOE T-T (ε2) carriers had significantly
decreased levels of LDL-C and TC (in adjusted models

Table 1: Characteristics of study fasting samples - NHANES III (1991-1994)

Characteristics Non-Hispanic White (n = 989) Non-Hispanic Black (n = 683) Mexican American (n = 741) P-value**

N Weighted*% (SE) N Weighted % (SE) N Weighted % (SE)

Age (years)

17-39 328 45.57 (1.88) 386 55.67 (2.30) 426 65.75 (2.32) <.0001

40-59 251 31.92 (2.07) 194 29.89 (1.97) 166 25.74 (1.98)

> = 60 410 22.51 (1.88) 103 14.45 (2.02) 149 8.51 (1.11)

Sex

Male 380 47.00 (1.78) 273 43.07 (1.79) 370 51.34 (1.17) 0.0053

Female 609 53.00 (1.78) 410 56.93 (1.79) 371 48.66 (1.17)

Education

<High School 246 18.26 (1.60) 225 30.40(2.83) 445 57.56 (2.84) <.0001

High School 363 35.71 (1.83) 252 37.23 (2.57) 176 25.64 (2.22)

College and Above 379 46.03 (2.64) 204 32.37 (3.21) 114 16.80 (2.39)

Physical Activity

None 195 16.69 (1.47) 199 28.74 (2.60) 256 31.35 (2.11) <.0001

Low 354 36.29 (1.82) 215 31.07 (1.87) 222 30.30 (1.75)

High 440 47.02 (2.50) 269 40.19 (2.71) 263 38.35 (2.22)

Alcohol Intake

None 536 45.67 (2.63) 375 55.16 (1.75) 376 48.25 (1.72) 0.0268

<4 237 28.82 (1.86) 135 22.00 (1.30) 170 26.66 (2.74)

> = 4 198 25.51 (1.83) 145 22.84 (1.44) 174 25.09 (1.82)

Smoking Status

Current 207 24.40 (2.02) 198 29.87 (1.54) 149 20.39 (1.65) <.0001

Former 291 28.36 (1.57) 87 13.43 (1.48) 161 19.34 (1.99)

Non-smoker 491 47.24 (2.36) 398 56.70(1.91) 431 60.26 (1.67)

N Mean (SE) N Mean (SE) N Mean (SE) P-value***

BMI 989 26.40 (0.20) 683 28.17 (0.28) 739 27.83 (0.25) <.0001

Total Fat Intake (g/day)**** 963 90.21 (2.49) 658 85.63 (2.90) 724 84.35 (2.33) 0.1826

Serum HDL (mg/dL) 983 49.33 (0.78) 675 53.88 (0.97) 739 46.58 (0.67) 0.0001

Serum LDL (mg/dL) 962 126.35 (1.20) 665 122.96 (1.57) 710 118.55 (1.25) 0.007

Total Cholesterol (mg/dL) 985 202.07 (1.46) 677 197.91 (1.39) 739 193.37 (1.49) 0.004

Serum Triglycerides (mg/dL) 984 138.73 (4.82) 677 107.27 (2.36) 738 146.67 (4.29) 0.0001

SE, standard error.
*Frequencies were adjusted using the NHANES III genetic sample weights.
**Chi-square test.
***P-value was calculated using the Satterthwaite-adjusted F test.
****Reported in a dietary recall from the previous 24-hour period.
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Table 2: Crude and adjusted associations between blood lipids and variants by race/ethnicity - NHANES III (1991-1994)

Genetic Variant Non-Hispanic White Non-Hispanic Black Mexican American SNP X Race/ethnicity

β (95% CI) FDR-adjusted P value* β (95% CI) FDR-adjusted P value β (95% CI) FDR-adjusted P value FDR-adjusted P value

Crude Analysis

High-density lipoprotein cholesterol

rs854560 (PON1) -2.23 
(-5.15,0.69)

0.3589 -0.58 
(-2.81,1.65)

0.869 3.59 
(1.55,5.64)

0.0308 0.2552

Low-density lipoprotein cholesterol

rs7412 (APOE) -16.68 
(-27.85,-5.50)

0.1144 -20.58 
(-29.12,-12.04)

<.0001 -19.80 
(-33.33,-6.28)

0.066 0.8931

Total serum cholesterol

rs7412 (APOE) -13.90 
(-25.39,-2.41)

0.1569 -16.26 
(-25.75,-6.77)

0.0374 -10.26 
(-19.18,-1.33)

0.2871 0.9227

Triglycerides

rs5918 (ITGB3) 0.05 
(-0.06,0.17)

0.7294 0.14 
(0.07,0.20)

0.0066 -0.05 
(-0.17,0.06)

0.613 0.4653

Adjusted Analysis**

High-density lipoprotein cholesterol

rs854560 (PON1) -1.53 
(-4.11,1.06)

0.5062 -0.09 
(-2.20,2.02)

0.9733 3.21 
(1.45,4.97)

0.022 0.1535

Low-density lipoprotein cholesterol

rs7412 (APOE) -16.87 
(-27.94,-5.81)

0.0968 -22.52 
(-30.01,-15.04)

<.0001 -21.47 
(-31.32,-11.62)

0.0022 0.9012

rs429358 (APOE) 8.26 
(1.19,15.33)

0.264 3.85 
(-2.14,9.84)

0.6169 10.54 
(6.41,14.67)

<.0001 0.9012

rs1799983 (NOS3) 3.05 
(-2.41,8.52)

0.5284 5.28 
(-0.42,10.98)

0.4103 -4.56 
(-7.63,-1.48)

0.0396 0.9012

Total serum cholesterol

rs7412 (APOE) -15.26 
(-26.16,-4.36)

0.0902 -20.68 
(-28.90,-12.47)

<.0001 -12.54 
(-19.89,-5.20)

0.0198 0.9724

rs429358 (APOE) 9.82 
(2.96,16.69)

0.0902 4.35 
(-2.30,11.01)

0.6839 11.18 
(7.11,15.25)

<.0001 0.9724

Triglycerides

rs5918 (ITGB3) 0.02 
(-0.07,0.11)

0.8985 0.14 
(0.09,0.19)

<.0001 -0.01 
(-0.14,0.11)

0.8962 0.4419

β, beta coefficient; CI, confidence interval; FDR, false discovery rate
*P-value was based on Satterthwaite-adjusted F test and adjusted for multiple comparisons using false discovery rate within each race/ethnicity group.
**Adjusted for age, sex, education, body mass index, smoking status, alcohol intake, physical activity, dietary fat intake.
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Table 3: Crude and adjusted haplotype analysis for blood lipid levels by race/ethnicity - NHANES III (1991-1994)

Genetic Variant Haplotype Non-Hispanic White Non-Hispanic Black

β (95% CI) FDR-adjusted P value* β (95% CI) FDR-adjusted P value

Crude Analysis

High-density lipoprotein cholesterol

PON1 A-A -6.56 
(-13.78,0.66)

0.3814 -0.91 
(-8.16,6.35)

0.9641

A-G -7.94 
(-25.71,9.83)

0.697 -1.45 
(-9.49,6.59)

0.9641

T-A -3.75 
(-7.46,-0.05)

0.3814 -0.12 
(-5.58,5.34)

0.9641

T-G REF REF

Low-density lipoprotein cholesterol

APOE C-C 12.12 
(-4.40,28.64)

0.2499 4.92 
(-5.58,15.41)

0.9016

T-C REF REF

T-T -30.86 
(-56.47,-5.25)

0.1066 -40.25 
(-57.28,-23.22)

0.001

NOS3 C-G -6.17 
(-19.32,6.98)

0.4971 2.26 
(-15.53,20.05)

0.9861

C-T 3.85 
(-11.06,18.76)

0.7161 38.05 
(4.28,71.81)

0.1927

T-G REF REF

T-T 0.82 
(-23.44,25.08)

0.9704 2.94 
(-11.50,17.37)

0.9861

PON1 A-A 10.91 
(-0.74,22.56)

0.1706 4.89 
(-12.82,22.60)

0.9861

A-G 46.49 
(21.16,71.82)

0.0063 8.91 
(-12.85,30.68)

0.9016

T-A 8.98 
(-2.58,20.53)

0.247 -1.09 
(-11.58,9.40)

0.9861

T-G REF REF

Total serum cholesterol

APOE C-C 14.28 0.2221 6.28 0.7536
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Adjusted Analysis**

High-density lipoprotein cholesterol

PON1 A-A -4.86 
(-11.20,1.48)

0.4856 -1.92 
(-9.08,5.24)

0.88

A-G -5.79 
(-14.56,2.98)

0.4856 2.17 
(-5.89,10.24)

0.88

T-A -3.22 
(-6.60,0.17)

0.4856 1.52 (-4.67,7.71) 0.88

T-G REF REF

Low-density lipoprotein cholesterol

APOE C-C 12.93 (-3.41,29.26) 0.3459 4.01 (-8.26,16.28) 0.85

T-C REF REF

T-T -31.14 (-56.65,-5.64) 0.0992 -44.33 (-59.39,-29.27) <.00

NOS3 C-G -3.42 (-15.49,8.65) 0.676 2.68 (-13.71,19.06) 0.85

C-T 6.48 (-10.27,23.22) 0.6032 31.18 (4.64,57.72) 0.23

T-G REF REF

T-T 1.64 (-20.75,24.03) 0.8806 1.95 (-10.32,14.21) 0.85

PON1 A-A 8.77 (-5.24,22.77) 0.4865 8.10 (-9.66,25.85) 0.85

A-G 40.03 (19.65,60.41) 0.0053 10.90 (-12.43,34.24) 0.85

T-A 9.78 (-0.77,20.33) 0.2366 -2.95 (-13.93,8.03) 0.85

T-G REF REF

Total serum cholesterol

APOE C-C 16.52 (0.51,32.53) 0.153 5.32 (-8.35,18.99) 0.80

T-C REF REF

T-T -27.18 (-52.46,-1.90) 0.153 -40.42 (-57.41,-23.43) 0.00

β, beta coefficient; CI, confidence interval; REF reference group. 
*P-value was based on Satterthwaite-adjusted F test and adjusted for multiple comparisons using false discovery rate within each
**Adjusted for age, sex, education, body mass index, smoking status, alcohol intake, physical activity, dietary fat intake.

Table 3: Crude and adjusted haplotype analysis for blood lipid levels by race/ethnicity - NHANES III (1991-199
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only). The A-G haplotype of ADRB2 was significantly
associated with elevated HDL-C (in crude and adjusted
models) among Mexican Americans (see Additional
Tables S5a and S6a). However, the confidence intervals
were relatively wide. Rare haplotypes (which were com-
bined and coded as "other") of MTHFR and TNF were
associated with blood lipids in at least one race/ethnic
group (Additional file 1, Tables S5a-d, S6a-d). There were
no common haplotypes significantly associated with TG
levels in any race/ethnic group.

Discussion
In this study, we evaluated statistical associations
between blood lipid levels and candidate genes involved
in a number of biological pathways, such as nutrient
metabolism, immune response and inflammation, oxida-
tive stress, and homeostasis. To our knowledge, there is
only one other study (i.e., Keebler et al.) [40] published
that describes genetic associations with blood lipid levels
using a nationally representative sample of the U.S. popu-
lation. This study also used data from the NHANES III
survey, but associations were examined at 19 genome-
wide validated loci on fasting and nonfasting samples.
Those data were not available for our use while the pres-
ent study was being conducted. We examined a different
set of polymorphisms which had been identified previ-
ously through candidate gene association studies. In our
analyses, we used only fasting samples in accordance with
guidelines from The National Cholesterol Education Pro-
gram (NCEP) Expert Panel on Detection, Evaluation, and
Treatment of High Blood Cholesterol in Adults (Adult
Treatment Panel III, ATPIII) [34].

Our findings suggest, before and after adjustment for
numerous demographic and behavioral characteristics in
one or more race/ethnic groups, that blood lipid levels
differ by an increasing number of minor alleles of poly-
morphisms in APOE, ITGB3, NOS3, and PON1. Our
results also show that the A-G haplotype of ADRB2 was
associated with elevated HDL-C among Mexican Ameri-
cans. However, these results from crude and adjusted
models are unstable (wide confidence intervals) and
would need more data collected to support the associa-
tion. We found that the group of rare haplotypes (fre-
quency <1%) within MTHFR and TNF were associated
with several blood lipids across race/ethnic groups; but,
we are unable to identify which rare haplotype(s) contrib-
ute to these findings. Consequently, we cannot interpret
these associations.

In analyses of individual variants and of haplotypes, we
found strong statistical associations between genetic vari-
ation in APOE and LDL-C and TC levels in non-Hispanic
blacks and Mexican Americans. APOE, one of the most
studied genes in risk assessment of cardiovascular dis-
ease, plays a key role in the metabolism of cholesterol and

triglycerides by binding to receptors on the liver and
helping to mediate the clearance of chylomicrons and
very low-density lipoproteins from the bloodstream [41-
46]. Allelic variation in APOE has been associated consis-
tently with plasma concentrations of total cholesterol and
LDL cholesterol [42,47], and with protein levels of APOB
(the major protein of LDL, VLDL, and chylomicrons).

Our findings suggested an association of the NOS3
rs1799983 variant and T-T haplotype with LDL-C in
Mexican Americans. NOS3 serves as a key enzyme of the
endogenous nitrovasodilator system, which is essential
for the regulation of vascular function and blood pres-
sure, through the production of nitric oxide. The
Glu298Asp variant (rs1799983) has been significantly
associated with higher plasma LDL cholesterol, LDL par-
ticle size, and lower plasma HDL cholesterol; but no sig-
nificant associations were found with the T-786C variant
[48]. Numerous studies have also reported a positive
association with the Glu298Asp variant and haplotypes
containing this variant with higher triglycerides and LDL
cholesterol in Venezuelans [49] and Greeks [50].

We found higher HDL-C among Mexican American
carriers of the PON1 rs854560 (Leu55Met) variant and
A-A and A-G haplotypes. Conversely, we found higher
LDL-C in non-Hispanic white carriers of the A-G haplo-
type. PON1 is an HDL-associated esterase that hydro-
lyzes products of lipid peroxidation and prevents the
oxidation of HDL and LDL. In fact, the antioxidant activ-
ity and anti-atherogenic effect of HDL is thought to be
largely because of the paraoxonase located on the HDL
particle. Variants in PON1 previously have been associ-
ated with serum HDL and LDL cholesterol levels [51,52],
and with increased risk for stroke [53]. There have been
multiple studies and meta-analyses evaluating the associ-
ation of PON1 variants with blood lipids in several popu-
lations or community-based samples, but with
inconsistent results [51,54-61].

Our results suggest a strong association of ITGB3 with
triglycerides in non-Hispanic blacks. ITGB3 is a mem-
brane receptor for fibrinogen and von Willebrand factor
that has an important role in platelet aggregation. The
Pro33 allele (rs5918) has been associated with coronary
thrombosis [62,63] and stroke [64,65]. A previous study
examined associations between 15 single nucleotide poly-
morphisms across ITGB3 and cardiovascular disease-
related traits in the Hutterites (e.g., plasma levels of HDL
and LDL cholesterol and triglycerides) and suggested that
ITGB3 has sex-specific associations with plasma lipopro-
tein(a) [66].

Although we did not assess racial/ethnic difference in
the genetic effects, we observed that two associations,
both involving the rs7412 variant in APOE, were signifi-
cant in two racial/ethnic groups. No variants were signifi-
cant across all three racial/ethnic groups after the FDR
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adjustment. Limited power and statistical chance may
explain, at least, in part, the lack of consistent findings
across the three race/ethnicities. Alternatively, these dif-
ferences may be caused by varying linkage disequilibrium
patterns at causal loci across different race/ethnic popu-
lations or by gene-environment interactions that have not
been identified or measured. As a result, it might not be
unusual to find varying risks for a disease or trait at a
given genomic locus across population subgroups. In
agreement, a recent study examined 12 newly discovered
genetic variants known to predict lipid levels in Europe-
ans and also evaluated local ancestry at validated genes
that influence lipid levels [67]. This study found genetic
differences between the determinants of lipid phenotypes
across different African and European populations. Such
findings might suggest that many of the truly causal vari-
ants in different race/ethnic groups have yet to be discov-
ered, as most genetic epidemiology studies have been
performed in populations of European descent.

Although we identified associations of APOE, ITGB3,
NOS3, and PON1 with blood lipid levels by examining
polymorphisms individually, our results suggest that
assessing genetic variation using haplotype methods
might be more comprehensive and more informative. We
found that although a single genetic variant might have a
small (if any) effect in identifying a susceptibility locus for
an outcome, the effect might reach statistical significance
when combined with other variants within the gene. For
example, after adding a single variant (APOE rs7412) to a
regression model containing non-genetic risk factors, we
were able to explain only slightly more variation in LDL-
C (R2 = 0.1448 for non-Hispanic white persons, 0.2065 for
non-Hispanic black persons, and 0.1462 for Mexican
American persons) compared to the variation explained
by non-genetic risk factors alone (R2 = 0.1163, 0.1533, and
0.1230, respectively). However, we observed that a larger
proportion of the variation in LDL-C is explained by the
model that contains the APOE T-T haplotype compared
to the model containing the rs7412 variant alone (R2 =
0.1521, 0.2073, and 0.1636, respectively). Overall, the
variance in blood lipid levels explained by the contribu-
tion of each individual variant or haplotype is consider-
ably small (<5%; data not shown).

The present study has many notable strengths. First,
the study was conducted using a large population-based
and nationally representative survey of the United States.
The wealth of data in NHANES facilitated the examina-
tion of genetic, environmental, and clinical data for each
of the three major race/ethnicities in the United States.
Moreover, whereas many previous reports were limited
to a single population or were based on smaller study
populations, we were able to conduct the analyses sepa-
rately in each race/ethnicity, and were therefore able to
account for the differences in allele frequencies, disease

prevalence, and linkage disequilibrium patterns between
these subpopulations. Finally, the control of hypercholes-
terolemia is an important clinical and public health
objective. Awareness of, and screening for, hypercholes-
terolemia have become more common in recent years.
Accordingly, treatment of the condition has increased
since the initiation of the National Cholesterol Education
Program in 1985. The use of cholesterol-lowering medi-
cations has increased steadily in U.S. adults aged ≥ 20
years, from 8.2% in 1999-2000 to 14.0% in 2005-2006, as
measured in NHANES [68]. Among those diagnosed
with hypercholesterolemia, the proportion on treatment
increased from 32.4% to 38.9% in the 8-year period from
1999 to 2006 [69]. Association analyses of genetic vari-
ants involved in influencing blood lipid levels may there-
fore be complicated by a high prevalence of study
participants who take lipid-lowering drugs. An advantage
of this study in NHANES III is that a small number of
participants taking such medication needed to be
excluded (n = 75; 3% of fasting samples). Evaluation of
such genetic associations in subsequent NHANES sur-
veys will result in a loss of a higher number of partici-
pants in the analyses.

In addition to these strengths, we acknowledge several
limitations. To help reduce the chance of potential false-
positive results from multiple testing, we adjusted p-val-
ues to control the false discovery rate [39]. This method
assumes that the set of tests are independent. Yet, we
know that many of the test statistics might be correlated
because of linkage disequilibrium between genetic vari-
ants [70]. The FDR adjustment, therefore, might result in
overly conservative p-values, thus decreasing our ability
to identify true associations.

Although we stratified the analysis by race/ethnicity, we
cannot eliminate completely the possibility of confound-
ing of our study results by population stratification. We
were not able to assess population structure in our analy-
sis and grouped participants by broad categories on the
basis of self-reported race and ethnicity. Substantial
admixture in the African American and Hispanic popula-
tions has been documented [71-74]. However, previous
research conducted on the U.S. population has found lit-
tle evidence for population substructure in whites [75].

Although the NHANES III data may be more represen-
tative of the U.S. population than other non-population-
based samples, the statistical power to detect genetic
associations was limited in this study. For example, we
determined the beta-coefficients that correspond to the
genetic variant explaining 1% of the variation in LDL-C.
The beta-coefficients ranged from 5.2 to 26.3 depending
on the frequency of the minor allele (MAF = 0.01 to 0.5).
Using these beta-coefficients and corresponding allele
frequencies described above for LDL-C, we found that
our power would be 42-82% for non-Hispanic whites, 24-
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66% for non-Hispanic blacks, and 27-70% for Mexican
Americans (Additional file 1, Table S7).

Conclusions
We report the significant association of blood lipid levels
with variants and haplotypes in APOE, ITGB3, NOS3,
and PON1 in multiple race/ethnic groups in the United
States, using a large, nationally representative and popu-
lation-based sample survey. Because of strengths of the
study design, these findings could be generalized to the
U.S. population. Results from our study contribute to a
growing body of literature identifying key determinants
of plasma lipoprotein concentrations and might provide
insight into the biological mechanisms underlying serum
lipid and cholesterol concentrations.
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