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Abstract
Background: To investigate the contribution of the dopamine transporter to dopaminergic
reward-related behaviors and anthropometry, we evaluated associations between polymorphisms
at the dopamine transporter gene(SLC6A3) and body mass index (BMI), among participants in the
Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.

Methods: Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem
repeat (3' VNTR) polymorphism) at the SLC6A3 gene were genotyped in 2,364 participants selected
from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height
and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated
and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥
30 kg/m2, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of SLC6A3 genotypes
and haplotypes were computed using conditional logistic regression.

Results: Compared with individuals having a normal BMI, obese individuals at the time of the
baseline study questionnaire were less likely to possess the 3' VNTR variant allele with 9 copies of
the repeated sequence in a dose-dependent model (** is referent; OR*9 = 0.80, OR99 = 0.47, ptrend
= 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-
G-* is referent; ORA-C-G-9 = 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is
referent; ORA-C-G-9 = 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype
with the 3'variant allele (A-C-G-9).

Conclusion: Our results support a role of genetic variation at the dopamine transporter gene,
SLC6A3, as a modifier of BMI.
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Background
Modifiable behavioral risk factors, specifically poor diet
and physical inactivity, tobacco use and alcohol con-
sumption are major causes of mortality in the United
States [1]. Family, twin and adoption studies provide evi-
dence that inherited variation makes a substantial contri-
bution to body fat/obesity, smoking and alcohol
dependence. With regard to obesity, the heritability of
BMI is estimated to be significant and to range up to 80%
in large twin samples [2,3]

Nearly two-thirds of the US population is overweight or
obese, and increased adiposity increases risk of death
from heart disease, type 2 diabetes mellitus, hypertension,
and diverse cancers [4]. Mutations in leptin (LEP), pro-
hormone convertase 1 (PCSK1), proopiomelanocortin
(POMC) and melanocortin 4 receptor (MC4R) are
involved in rare monogenic recessive forms of obesity [5],
but studies relying on populations with morbid obesity
may not represent processes contributing to overweight
and obesity in the general population. The genetic varia-
tion that contributes to susceptibility to obesity in the
general population is beginning to be elucidated through
candidate gene and genome wide studies focused on obes-
ity and related phenotypes [6]. Recent genome wide asso-
ciation scans have identified regions in the FTO gene [7-
10] and variants telomeric to the MC4R gene to be associ-
ated with obesity [11,12]. The genes identified to date
likely only identify a small proportion of the genetic vari-
ability that influences susceptibility to obesity.

Diverse lines of evidence implicate heritable differences in
the dopamine reward pathway associated with the con-
sumption of food, as well as alcohol dependence and
tobacco use [13-21]. Dopamine is a key neurotransmitter
mediating reward, and therefore, it is relevant to diverse
behavioral conditions including obesity. SLC6A3, the
dopamine transporter gene, is an important polymorphic
gene which controls the reuptake of dopamine in the syn-
apse, in areas of the CNS crucial to reward and learning
such as the mesolimbic pathway. Early genetic association
studies in the general population examined SLC6A3 in
relation to smoking and alcohol intake [22,23], and there
is evidence for a relationship of SLC6A3 genotype to BMI
in a small study in African Americans [24]. However, a
large, representative United States population has not
been studied to date.

We previously reported an association with the DRD2
TaqI and IVS6-83 variant alleles and the wild-type-239
allele with obesity [25,26]. In order to further evaluate the
effects of common inherited variation in the dopamine
pathway on BMI, we extended our study to include four
polymorphisms in the gene that codes for the dopamine
transporter (DAT1), SLC6A3, among 2,364 participants in

the Prostate, Lung, Colorectal, and Ovarian (PLCO) Can-
cer Screening Trial.

Methods
Study population
The PLCO Cancer Screening Trial study population has
been described previously [27]. Briefly, over 150,000 indi-
viduals aged 55–74 years from ten US study centers were
randomized during 1992–2001 to undergo a specific can-
cer screening regimen or receive routine medical care to
evaluate the effects of screening on disease-specific mor-
tality. At entry into the trial, participants provided written,
informed consent and completed a baseline demographic
and risk factor questionnaire. Participants in the screening
arm were also asked to provide separate written, informed
consent and a blood sample for use in etiologic studies.

Adult height and weight at baseline and ages 20 and 50
were obtained from the baseline questionnaire. Body
mass index (BMI, kg/m2) was computed. Individuals were
characterized at each age as underweight, normal weight,
overweight, or obese. Information on the smoking habits
of smokers and alcohol consumption were obtained in
the baseline questionnaire; non-smokers were defined as
individuals who had never smoked cigarettes regularly for
at least six months. Additional information on race/eth-
nicity, highest level of schooling completed and marital
status were also obtained from the baseline questionnaire.

Design
We originally selected a sample for investigations of
behavioral characteristics (smoking, alcohol dependence
and BMI) related to cancer, and we have reported the
smoking results [25,28]. The sample consisted of 2,406
participants selected randomly after stratifying by sex, age
(55–59, 60–64, 65–69, 70–74 years), smoking status
(never, current, former), and quantity of cigarettes
smoked for current and former smokers (1–10, 11–20,
21+ cigarettes per day). Blood samples with sufficient
DNA for genotyping were available for 2,379 (98.9%) of
these individuals. An additional 15 individuals were
excluded due to missing data for BMI at all three time
points (ages 20 and 50 years and baseline), yielding a
final analytic population of 2,364 participants. This study
was conducted according to a protocol approved by the
Institutional Review Board of the National Cancer Insti-
tute.

Genotyping
We selected for genotyping three single nucleotide poly-
morphisms (SNPs) and one variable number of tandem
repeat (VNTR) polymorphism in SLC6A3 (see Additional
file 1, Supplemental table 1). Two of the selected SNPs,
SLC6A3 1215A>G (Ex9-55; S405S) and SLC6A3 114C>T
(Ex2+159; N38N) are in the coding region of SLC6A3. The
third SNP, SLC6A3 -3714G>T, is located in the 5' non-
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coding region. With respect to the SLC6A3 VNTR geno-
type, the * symbol designates any VNTR allele other than
the 9 allele. We also evaluated four SNPs in DRD2/
ANKK1, which have been previously reported [25] for a
possible gene-gene effect (see Additional file 1, Supple-
mental table 1). All polymorphisms were chosen based on
biologic plausibility, previous research, availability of
functional data, potential linkage disequilibrium with
other functional SNPs, and minor allele frequency greater
than 5% [29]. DNA extraction and genotyping and quality
control data are reported elsewhere [25].

Statistical analysis
Hardy-Weinberg equilibrium was evaluated among non-
Hispanic Caucasians for each polymorphism by comput-

ing the Pearson chi-square statistic. Haplotypes were visu-
alized using Haploview, version 3.11, based on measures
of pairwise linkage disequilibrium between polymor-
phisms. SAS/Genetics, version 8.2 (SAS Institute, Inc.,
Cary, NC), was used to generate maximum likelihood
estimates of haplotype frequencies and to assign the most
probable haplotypes for each individual. Haplotypes with
an estimated frequency of greater than 1% were consid-
ered in our analyses. Individuals with missing values for
one or more genotypes were excluded from the haplotype
analyses for that gene. As haplotype analyses are poten-
tially more sensitive to ethnic variation, these analyses
were limited to non-Hispanic Caucasians only. The prob-
ability of the assigned haplotype pair was greater than
99% for approximately 80% of individuals.

Table 1: Selected characteristics of study participants from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial 
(PLCO)

Current BMI*

Underweight Normal Overweight Obese

N = 26 N = 898 N = 989 N = 443
Gender, # (%)
Male 4 (15.4) 380 (42.3) 571 (57.7) 232 (52.4)
Female 22 (84.6) 518 (57.7) 418 (42.3) 211 (47.6)

Age in yrs, # (%)
50–59 3 (11.5) 218 (24.2) 248 (25.1) 126 (28.4)
60–64 7 (26.9) 194 (21.6) 268 (27.1) 128 (28.9)
65–69 8 (30.8) 254 (28.3) 258 (26.1) 108 (24.4)
70–74 8 (30.8) 232 (25.8) 215 (21.7) 81 (18.3)

Race, # (%)
Caucasian 23 (88.5) 799 (89.0) 888 (89.8) 359 (81.0)
African American 1 (3.8) 37 (4.1) 43 (4.3) 30 (6.7)
Other 2 (7.7) 62 (6.9) 58 (5.9) 18 (4.1)

Education, # (%)
<= 12 years 14 (53.8) 264 (29.4) 306 (31.0) 165 (37.3)
Some College 7 (26.9) 318 (35.5) 376 (38.1) 167 (37.7)
College grad. 5 (19.2) 315 (35.1) 305 (30.9) 110 (24.9)
Missing 0 (0.0) 1 (0.002) 2 (0.002) 1 (0.003)

Marital Status, # (%)
Married/living as married 14 (53.8) 613 (68.3) 716 (72.4) 313 (70.7)
Unmarried 12 (46.2) 285 (31.7) 271 (27.4) 103 (23.3)
Missing 0 (0.0) 0 (0.0) 2 (0.002) 0 (0.0)

Smoking Status, # (%)
Never 3 (11.5) 81 (9.0) 84 (8.5) 43 (9.7)
Current 19 (73.1) 461 (51.3) 434 (43.9) 146 (33.0)
Former 4 (15.4) 356 (39.6) 471 (47.6) 254 (57.3)

Cigarettes per day, # (%)
1–10 8 (34.8) 286 (35.0) 286 (31.6) 135 (33.8)
11–20 9 (39.1) 286 (35.0) 316 (34.9) 111 (27.8)
21+ 6 (26.1) 245 (30.0) 303 (33.5) 154 (38.5)

* BMI categorized as Underweight (≤ 18 kg/m2), Normal (18–24.9 kg/m2), Overweight (25–29.9 kg/m2) or Obese (≥ 30 kg/m2); data on BMI at 
baseline were missing for N = 8 individuals.
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Individuals were characterized at each age as underweight,
normal weight, overweight, or obese (<18.5, 18.5–24.9,
25.0–29.9, or ≥ 30 kg/m2, respectively). Change in weight
over time was assessed in two ways. First, individuals were
categorized into four groups based on percent change in
weight from age 20 to age 50 and from age 20 to current
age (≤ 10%, 10.1–20.0%, 20.1–30.0%, or > 30.0%). Sec-
ond, change in weight per 10 years was computed by
regressing BMI at ages 20, 50 and age at a baseline meas-
urement recorded at study enrollment against age. The
slope of each regression line was then characterized into
four groups (≤ 0.30, 0.31–0.70, 0.71–1.20, or > 1.20 kg/
m2 per 10 years). This slope of BMI change corresponds to
a change in weight, as height was only reported once at the
time of baseline questionnaire. Intensity of cigarette
smoking was categorized as light, medium, or heavy (1–
10, 11–20, or ≥ 21 cigarettes per day, respectively).

Cross sectional analysis was conducted to compare indi-
viduals by behavioral characteristics at baseline (obese,
overweight, or underweight versus normal weight individ-
uals, smoking status and alcohol use), to compare indi-
viduals by percent change in weight from age 20 to current
age (10.1–20.0%, 20.1–30.0% or > 30.0% versus ≤ 10%)
and finally to compare individuals by BMI slope, the
change in weight per 10 years (0.31–0.70, 0.71–1.20, or >
1.20 versus ≤ 0.30 kg/m2 per 10 years).

The sample was originally selected to examine behavioral
characteristics relevant to cancer (smoking, alcohol use
and BMI), so data had been sampled by categories of cur-
rent smoking status and cigarettes per day, age group and
gender. Differences between comparison groups in the
distribution of SCL6A3 gene variants were quantified
using multivariate conditional logistic regression models,
conditioned on the variables used to construct the strati-
fied sample (sex, age, smoking status, and quantity of cig-
arettes smoked for current and former smokers).
Conditional logistic regression was necessary, as the orig-
inal study design involved sampling according to these
variables. In such a case, conditional logistic regression
most appropriately models the sampling frame to obtain
proper risk estimates. Attempts to conduct an uncondi-
tional logistic regression including all strata terms resulted
in non-convergence of the model.

Odds ratios (ORs) and 95% confidence intervals (CIs)
were computed for individual genotypes with the com-
mon allele homozygote as the referent. In the case of hap-
lotypes, data were analyzed with the haplotype containing
the most common allele for each locus as the referent.
Using an additive (dose-dependent) model, we also com-
puted a p-value for the linear trend based on a three-level
variable for each genotype (common allele homozygote,
heterozygote, variant allele homozygote); this is equiva-

lent to a dose-dependent effect with regard to the number
of copies of the variant allele. Finally, adjusted analyses
on baseline BMI and SLC6A3 genotype were conducted
stratified by DRD2 haplotype, to evaluate a possible inter-
action between DRD2 and SLC6A3.

All models were also adjusted for self-identified race/eth-
nicity (Caucasian, African American, other). Inclusion of
additional demographic factors, such as alcohol use, edu-
cation, and marital status, in the models did not substan-
tially modify the parameter estimates (± 10%) and were
therefore excluded from the model. The SAS System, ver-
sion 9.1 (SAS Institute, Inc., Cary, NC), was used to con-
duct all statistical analyses. P-values are presented with
one significant digit. Statistical tests were two-sided with
an α-level of 0.05.

Results
Genotype concordance rate was greater than 97%. We
observed no significant deviation from Hardy-Weinberg
equilibrium for any of the polymorphisms (all p > 0.80).

Underweight, normal weight, overweight, and obese indi-
viduals differed significantly by gender (p < 0.0001), age
(p = 0.006), education (p = 0.0008), smoking status (p <
0.0001) and cigarettes per day (among smokers, p = 0.04)
(Table 1). Specifically, obese individuals tended to be
male, younger, less highly educated, married, and former
smokers.

BMI was significantly associated with SLC6A3 polymor-
phisms and haplotypes (Table 2). Compared with indi-
viduals with normal BMI at baseline, obese individuals
(BMI ≥ 30 kg/m2) were less likely to possess the SLC6A3
VNTR variant allele (9 copies of the VNTR) in a dose-
dependent model (** is referent; OR*9 = 0.80, OR99 =
0.47, ptrend = 0.005). Consistent with the single polymor-
phism analyses, obese individuals at baseline were less
likely than individuals with normal BMI to possess the
haplotype with the SLC6A3 VNTR variant allele (A-C-G-9)
(A-C-G-* is referent; ORA-C-G-9 = 0.60, 95% CI 0.45–0.80,
p = 0.001). Results were consistent for the analysis at age
50. Compared with individuals with normal BMI at age
50, overweight individuals (A-C-G-* is referent; ORA-C-G-9
= 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individu-
als (A-C-G-* is referent; ORA-C-G-9 = 0.70, 95% CI 0.49–
0.99, p = 0.04) were less likely to possess the haplotype
with the SLC6A3 variant allele (A-C-G-9). No significant
trends were noted at age 20.

Compared with individuals having a normal BMI, under-
weight individuals (BMI < 18.5 kg/m2) at the time of the
baseline study questionnaire were significantly more
likely to possess the variant allele for the SLC6A3 poly-
morphism Ex9-55A>G in a dose-dependent model (AA is
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referent; ORAG = 2.7, ORGG = 6.1, ptrend = 0.003) (Table 2).
Results from the haplotype analyses were consistent with
those from the single polymorphism analyses (Table 2).

Percent change in weight and weight change slope were
also associated with SLC6A3 haplotypes, although the
association between individual polymorphisms and per-
cent change in weight did not achieve statistical signifi-
cance. Individuals who carried the 9 VNTR allele on a
wild-type background for the other SNPs (A-C-G-9) were
less likely to significantly increase their weight from age
20 to age 50 (Table 3). Similarly, individuals with this
haplotype were less likely to experience rapid weight gain
(increased slope of weight change) from age 20 to the
time of the baseline questionnaire (see Additional file 1,
Supplemental table 2).

We found no evidence of interaction between polymor-
phisms at SLC6A3 and DRD2/ANKK1. Among individuals
with the DRD2/ANKK1 haplotype (T-C-T-A) previously
associated with obesity [25], no marked increase in effect
of the SLC6A3 VNTR on obesity was observed (** = refer-
ence; OR*9 = 0.89, 95% CI 0.54–1.46; OR99 = 0.54, 95%
CI 0.23–1.33, p-value for interaction = 0.62).

Analyses restricted to non-Hispanic Caucasians were con-
sistent with the findings above (data not shown).

We did not observe any significant associations of the
SLC6A3 polymorphisms with any of the smoking out-
comes (number cigarettes per day, smoking duration, age
at initiation, pack years) or alcohol consumption.

Discussion
We report a protective effect of the 9 allele of the SLC6A3
VNTR on overweight and obesity and a novel association
between the presence of the G allele of SLC6A3 Ex9-
55A>G polymorphism and being underweight. These
results support the role of genetic variation at the
dopamine transporter locus as modifiers of body weight
and extend our earlier findings that polymorphisms in the
D2 dopamine receptor are associated with both cigarette
smoking and obesity [25,26], suggesting that multiple
genes in the dopaminergic system influence these behav-
iors.

Dopaminergic function may modulate reward from both
food and drugs of abuse. This reward deficiency hypothe-
sis (constitutional anhedonia predisposing individuals to
reliance on extrinsic stimuli such as food, nicotine or alco-
hol) provides the dominant framework in molecular
genetic studies of dopaminergic function and its effects on
drug addiction (e.g., [30,31]). This model has also moti-
vated, in part, interpretation of neuroimaging based stud-
ies, which have provided molecular and functional

Table 2: SLC6A3 polymorphisms and haplotypes by body mass index

Normal Underweight BMI† Overweight BMI† Obese BMI†

Polymorphism N N OR‡ (95% CI) P N OR‡ (95% CI) P N OR‡ (95% CI) P

SLC6A3 VNTR
** 459 14 1.00 (reference) 514 1.00 (reference) 254 1.00 (reference)
*9 361 12 1.07 (0.48, 2.38) 0.870 390 0.93 (0.76, 1.13) 0.459 159 0.80 (0.62, 1.04) 0.093
99 67 0 ~ 63 0.81 (0.56, 1.19) 0.284 19 0.47 (0.27, 0.83) 0.009

P for trend p = 0.246 p = 0.005
*9/99 0.91 (0.41, 2.01) 0.809 0.91 (0.75, 1.10) 0.332 0.75 (0.59, 0.96) 0.023

Ex9-55A>G
AA 498 8 1.00 (reference) 539 1.00 (reference) 220 1.00 (reference)
AG 338 14 2.66 (1.08, 6.58) 0.034 369 1.03 (0.85, 1.25) 0.771 193 1.34 (1.04, 1.73) 0.023
GG 59 4 6.12 (1.66, 22.61) 0.007 80 1.25 (0.86, 1.82) 0.234 27 0.99 (0.60, 1.66) 0.981

P for trend p = 0.003 p = 0.329 p = 0.152
AG/GG 3.04 (1.28, 7.24) 0.012 1.06 (0.88, 1.28) 0.533 1.29 (1.01, 1.65) 0.042

Haplotype §

A-C-G-* 795 22 1.00 (reference) 906 1.00 (reference) 419 1.00 (reference)
A-C-G-9 251 3 0.44 (0.13, 1.49) 0.187 252 0.85 (0.69, 1.05) 0.126 84 0.60 (0.45, 0.80) 0.001
A-T-T-* 86 0 ~ 81 0.90 (0.65, 1.25) 0.529 34 0.79 (0.51, 1.23) 0.298
G-C-G-* 213 10 1.84 (0.83, 4.05) 0.132 242 1.03 (0.83, 1.28) 0.761 124 1.15 (0.88, 1.50) 0.319
G-C-G-9 173 7 1.51 (0.62, 3.70) 0.369 200 1.00 (0.79, 1.26) 0.988 75 0.88 (0.64, 1.20) 0.408

* = an allele other than the SLC6A3*9 allele. These are largely (98.1%) the SLC6A3*10 VNTR allele.
† BMI categorized as Underweight (≤ 18 kg/m2), Normal (18–24.9 kg/m2), Overweight (25–29.9 kg/m2) or Obese (≥ 30 kg/m2).
‡ OR estimated using conditional logistic regression, conditioning on age, sex, current smoking status, number of cigarettes smoked.
§Haplotype analyses were conducted among non-Hispanic Caucasians.
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neuroanatomical evidence on the relationship between
dopaminergic function and drug addiction or obesity
[32].

The dopamine transporter (DAT1, SLC6A3) is responsible
for the reuptake of dopamine into the presynaptic
dopaminergic cell from the dopamine synapse. The
SLC6A3 VNTR polymorphism has been considered to be
functional based on a relation of the repeats to regulation
of promoter activity. in vitro and ex vivo studies involving
human tissues have shown that the SLC6A3*10 allele has
been associated with increased concentrations of DAT
protein, when compared with the SLC6A3*9 allele [33-
36], although neuroimaging approaches involving indi-
rect estimation of striatal DAT levels by antagonist dis-
placement and single photon emission computed
tomography (SPECT) have not revealed consistent differ-
ences in DAT levels between 9 and 10 repeats [37-40].
Mechanistically, increasing the number of variable repeats
appears to result in higher concentrations of the DAT pro-
tein. This, in turn, may lead to higher dopamine trans-
porter binding and more efficient dopamine clearance,
resulting in lower postsynaptic concentrations of
dopamine. Presence of "faster" dopamine reuptake, as
seen with the 10 repeat allele, may affect the reinforcing
value of food.

This present study supports the association between the
presence of the 9 allele of SLC6A3 VNTR and decreased
risk of obesity. Our findings are supported by earlier work
of Epstein et al, who first reported the association of the 10
allele and obesity in African American smokers [24]. A
recent study evaluating polymorphisms in genes involved
in dopamine availability in a UK cohort of Caucasian
females did not find this association; however, the study
was not sufficiently large enough to detect an effect of the
size that we detected at the SLC6A3 VNTR [41]. Another
recent study did not report an association with the
SLC6A3 VNTR and BMI, but this study was based on an
adolescent cohort, which had large demographic differ-
ences from our study [42]. Also, although recent genome
wide association studies have identified common genetic
variation in the melanocortin 4 receptor (MC4R) and FTO
(the fat mass and obesity associated) genes, an association
with the dopamine transporter was not reported [7-
9,11,12]. However, it is important to stress that genome-
wide association studies do not capture all genetic varia-
tion in the human genome (for example, variants with
MAF < 5% are often completely absent); therefore, candi-
date gene studies will continue to be important to verify
and provide more detailed analyses of biologically plausi-
ble candidates [43].

Table 3: SLC6A3 polymorphisms and haplotypes by percent change in weight

% Change in weight from age 20 to age 50

5.1–15.0% (N = 806) vs. ≤ 5% 
(N = 515)

15.1–25.0% (N = 524) vs. ≤ 
5% (N = 515)

> 25% (N = 481) vs. ≤ 5% 
(N = 515)

Polymorphis
m

N G Freq (%) OR‡ (95% CI) OR‡ (95% CI) OR‡ (95% CI)

SLC6A3 
VNTR

*9 724 39.9 0.88 (0.70, 1.13) 0.92 (0.71, 1.20) 0.90 (0.68, 1.18)

99 119 6.5 1.10 (0.70, 1.73) 0.70 (0.41, 1.22) 0.64 (0.36, 1.14)
Ex9-55A>G AG 711 39.0 1.16 (0.91, 1.48) 1.28 (0.98, 1.67) 1.14 (0.87, 1.50)

GG 138 7.2 0.86 (0.56, 1.34) 0.96 (0.60, 1.54) 0.70 (0.41, 1.20)
Ex2+159C>T CT 188 10.8 1.02 (0.70, 1.47) 1.06 (0.71, 1.57) 0.87 (0.56, 1.35)

TT 6 0.4 0.76 (0.14, 4.17) 0.82 (0.13, 5.09) 0.46 (0.08, 2.76)
-3714G>T GT 194 11.1 1.01 (0.70, 1.45) 1.17 (0.80, 1.73) 0.80 (0.51, 1.24)

TT 8 0.5 0.74 (0.15, 3.56) 0.92 (0.18, 4.78) 0.48 (0.08, 2.87)

Haplotype†

A-C-G-* 2153 50.9 1.00 (reference) 1.00 (reference) 1.00 (reference)
A-C-G-9 596 14.1 0.92 (0.72, 1.18) 0.74 (0.56, 0.98) 0.70 (0.52, 0.94)
A-T-T-* 202 4.8 1.15 (0.76, 1.73) 1.23 (0.79, 1.93) 0.94 (0.57, 1.53)
G-C-G-* 592 14 1.05 (0.82, 1.36) 1.12 (0.85, 1.47) 0.91 (0.68, 1.23)
G-C-G-9 456 10.8 1.07 (0.81, 1.43) 1.12 (0.82, 1.53) 0.96 (0.69, 1.34)

* = an allele other than the SLC6A3*9 allele. These are largely (98.1%) the SLC6A3*10 VNTR allele.
† Haplotype analyses were conducted among non-Hispanic Caucasians
‡ OR estimated using conditional logistic regression, conditioning on age, sex, current smoking status, number of cigarettes smoked
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This present study also supports an association between
presence of the G allele of SLC6A3 Ex9-55A>G polymor-
phism and being underweight. Although this relationship
is statistically striking, further study is required to validate
this finding. However, dopamine dysregulation is present
in anorexia nervosa. For example, increased central
dopaminergic activity is observed in weight-recovered
anorectics compared to controls [44], and dopamine D2
and D4 receptor polymorphisms have been associated
with anorexia [45,46]. At present, it is unknown if the
SLC6A3 Ex9-55A>G polymorphism represents a func-
tional variant. It is possible that this variant influences
transcription, transcript stability or translation [47] or
that it is in linkage disequilibrium with a functional poly-
morphism; exon 9 and the VNTR polymorphism have
been reported to be in linkage disequilibrium [48].

Smoking and being overweight are related [49] and both
increase the risk of death from the major causes of mortal-
ity including heart disease, diabetes and cancer [50-53].
As expected, we saw a significant difference in smoking
status by BMI, with former smokers more likely to be
obese than their smoking counterparts. This association
has been previously described, as well as weight gain after
smoking cessation [54,55]. Previous studies have shown
that this association may be due to a relationship between
food reinforcement and dopamine genotypes in smokers,
as smoking cessation decreases the activation of the
reward pathway, resulting in the substitution of food for
cigarettes [56]. Earlier work suggested an interaction of
the dopamine receptor and transporter on both smoking
and cessation outcome [57,58]. As smoking and being
overweight are related [49,54,55] and the same genetic
polymorphisms involved in the dopaminergic reward
pathway that regulates food reward may also influence
reward from nicotine, it is reasonable to postulate that
DRD2 and the dopamine transporter interact to increase
their effects on BMI. Although we failed to observe formal
statistical interaction (supraadditive or multiplicative
effect) of the two genes, the additive effects observed are
consistent with effects of both genes on obesity.

It is important to note some limitations with this study.
We relied on self-report data for height and weight to cal-
culate BMI. This type of self-report data has an inherent
degree of misclassification, which can bias results towards
the null. In order to minimize this misclassification error,
we categorized BMI by established, broad categories. Use
of this classification is widely accepted in the literature but
does slightly reduce power; the original continuous BMI
variable would have provided a slightly more powerful
test for association with the genetic polymorphisms. Also,
although our study size was substantial for a study of this
type, reliable detection of interaction or subgroup effects
generally requires much larger study samples or consortia.

Conclusion
This study has identified an association of a functional
polymorphism at a key dopaminergic locus, the
dopamine transporter (SLC6A3), and BMI. The direction
of this allelic effect is consistent with prior functional
studies, suggesting that reduced reuptake of dopamine is
protective against overweight and obesity, as well as
increases in BMI. Further study of the relationships
between the dopaminergic system and BMI is warranted,
including taking into account sensitivity to reward as a
factor influencing both diet and exercise [59].
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