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Abstract

Background: Hearing loss (HL) is the most common sensorineural disorder with high phenotypic and genotypic
heterogeneity, which negatively affects life quality. Autosomal recessive non-syndromic hearing loss (ARNSHL)
constitutes a major share of HL cases. In the present study, Whole exome sequencing (WES) was applied to
investigate the underlying etiology of HL in an Iranian patient with ARNSHL.

Methods: A proband from an Iranian consanguineous family was examined via WES, following GJB2 sequencing.
WES was utilized to find possible genetic etiology of the disease. Various Bioinformatics tools were used to assess
the pathogenicity of the variants. Co-segregation analysis of the candidate variant was carried out. Interpretation of
variants was performed according to the American College of Medical Genetics and Genomics (ACMG) guidelines.

Results: WES results showed a novel frameshift (16 bp deletion) variant (p.Ala170Alafs*20) in the LRTOMT gene. This
variant, which resides in exon 6, was found to be co-segregating in the family. It fulfils the criteria set by the ACMG
guidelines of being pathogenic.

Conclusion: Here, we report successful application of WES to identify the molecular pathogenesis of ARNSHL,
which is a genetically heterogeneous disorder, in a patient with ARNSHL.
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Background
Hearing loss (HL) is the most common congenital sensori-
neural defect affecting about 1 of 500–1000 newborns world-
wide. It represents a significant global health problem [1].
HL has a wide spectrum of clinical manifestations: congenital
or late onset, conductional or sensorineural, syndromic or

non-syndromic [2]. Approximately, 50% of HL is related to
genetic causes [2], meanwhile environmental and age-related
HL account for the remaining percentage [3, 4]. Non-
syndromic HL (NSHL) is responsible for 70–80% of all her-
editary cases of HL. It, in turn, includes the autosomal reces-
sive (AR) pattern (75%), the autosomal dominant (AD) (20–
25%) and mitochondrial and X-linked HL (about 1%) [5–7].
Syndromic HL (SHL) accounts for the remaining 20–30% of
genetic disorders in children [7]. There are about 400 types
of syndromic HL [8]. HL is frequent in the Middle East and
Northern African countries, with high rate of consanguinity
[9, 10]. Iran, which has a consanguinity rate of about 38.6%,
is an appropriate region for HL studies [11].
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Mutations in one single locus, DFNB1 locus at 13q11–
12 containing GJB2 (gap junction protein β-2) and GJB6
genes [7], account for 50% of the ARNSHL etiology in
many Western populations [12]. In Iran, the prevalence
of the GJB2 mutations is variable, depending on ethni-
city and geographical location [13, 14]. The average per-
centage of GJB2 mutations, as the cause of ARNSHL, in
Iran is about 18.7% [15], with a higher frequency in the
north (33%) and a lower frequency (4%) in the southern
regions. In this region, mutations in SLC26A4 are more
frequent [16]. After the exclusion of GJB2, recognizing
the underlying gene is difficult due to the high degree of
genetic heterogeneity of HL. Therefore, whole exome se-
quencing would be ideal to determine HL causing muta-
tions [17].
DFNB63 (OMIM 611451) was mapped to human

chromosome 11q13.3-q13.4 [18–20]. This region con-
tains the LRTOMT (Leucine Rich Transmembrane and
O-Methyl-Transferase) gene [21]. LRTOMT is a fusion
gene that has alternative reading frames and only exists
in primates. Human LRTOMT has 10 exons, of which
the first two are non-coding. Five transcripts have been
reported for this gene. It has two different major protein
products namely LRTOMT1 and LRTOMT2, which dif-
fer in the position of the start codons (Fig. 1a) [18].
LRTOMT is expressed in sensory hair cells with a funda-
mental role in auditory and vestibular functions [22].
LRTOMT1 is of unknown function while LRTOMT2
participates in inactivation of catecholamine neurotrans-
mitters. Notably, there is homology between LRTOMT2
and COMT and the majority of the residues that are
involved in the substrate binding region are conserved
[23, 24]. Accordingly, it seems that LRTOMT2 might
function as a catechol-O-methyltransferase [25]. Thus,
LRTOMT2 has been named as COMT2. It catalyzes the
transfer of a methyl group from S-adenosyl-L-methio-
nine (AdoMet) to a hydroxyl group of catechols [23]. It
is expressed in sensory hair cells in the inner ear. The
defects in O-methyl transferase protein have been noted
to cause NSHL [16]. Missense mutations cause a signifi-
cant reduction in COMT2 enzymatic activity, suggesting
that a defect in catecholamine catabolism underlies audi-
tory and vestibular phenotypes [22]. The 11q13.3-q13.4
includes FGF3 (Fibroblast growth factor 3) gene, too.
Mutations of this gene cause a form of syndromic HL
(OMIM 610706), characterized by microtia, microdontia
and inner ear agenesis [26, 27]. Patients with NSHL that
are due to mutations in the LRTOMT gene have been
found to be segregating only in the Middle Eastern,
which is of a high consanguineous marriage [20, 21, 26,
28–30]. The highest mutation frequency in this gene is
reported in Tunisian families and then in Iranian, Turk-
ish and Pakistani families [21, 22]. These mutations lead
to severe-to-profound prelingual NSHL [18].

The recently developed next generation sequencing
(NGS) technologies such as targeted NGS (TNGS),
whole genome sequencing (WGS) or whole exome se-
quencing (WES) have revolutionary improved disease
diagnosis [31] and discovery of novel disease-causing
genes and variants [32]. Recent advances in DNA en-
richment and NGS methods have provided the oppor-
tunity for rapid and cost-effective analysis to identify
pathogenic mutations in HL patients [33]. WES is an ac-
ceptable method with efficient strategy to recognize
disease-causing mutations in genetically heterogeneous
diseases. In this method, single nucleotide variants
(SNVs), small insertion/deletions, and sometimes struc-
tural changes such as copy number variations (CNVs)
can be diagnosed [34, 35].
The aim of this study was to identify the molecular

pathology of congenital HL in a four-year-old boy using
WES, which led to the identification of a novel frame-
shift mutation.

Methods
Subject and clinical evaluations
A four-year-old boy with congenital HL from an Iranian
consanguineous family (first cousins) with no history of
HL was ascertained (pedigree is shown in Fig. 1b). Com-
prehensive family history, audiological testing such as
play audiometry, tympanometry, acoustic stapedial re-
flex, transient /distortion product oto acoustic emission
(TE/DPOAEs), auditory brainstem response (ABR), audi-
tory steady state response (ASSR) and physical examin-
ation were performed. The parents signed written
informed consent following pre-test genetic counseling.
Clinical examinations did not reveal any symptoms of
syndromic form of HL. The patient received cochlear
implant at the age of 1 year and 5months.
Auditory and speech performance in these cases were

evaluated using the categories of auditory performance
(CAP) [36] scale and speech intelligibility rating (SIR)
[37] scale. These scales are reliable for measuring the
outcome of cochlear implantation [38, 39]. CAP consists
of 8 categories, ranging from “no awareness of environ-
ment” (CAP score 0) to “use of telephone with known
users” (CAP score 7) and SIR consist of 5 categories,
ranging from “unintelligible speech” (SIR score 1) to
“speech intelligible to all listeners” (SIR score 5).

Molecular study
DNA extraction, GJB2 sequencing
Genomic DNA was extracted using Prime Prep Genomic
DNA Extraction kit from blood (GeNet Bio, Korea), ac-
cording to the manufacturer’s instruction. DNA purity
and concentration was determined using the Nanodrop
2000 spectrophotometer (Nonodrop 2000 Thermo Scien-
tific, USA) and its quality was checked on 1% agarose gel.
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Fig. 1 a Two isoforms encoded by the LRTOMT gene: LRTOMT1 and LRTOMT2. LRTOMT1 starts in exon 3 and LRTOMT2 starts in exon 5. CDS
regions are colored red. In this transcript of LRTOMT (NM_001145308), LRTOMT2, starts from exon 3 and ends in exon 7. b Pedigree of the family.
The proband is marked by an arrow. c Pure tone audiogram of patient. Audiogram indicate sever-to-profound hearing loss in both ears.
Frequency in hertz (Hz) and the hearing threshold in decibels (dB) are shown. d The electropherogram of the muatation in the patient (A1),
deletion of 16 bp homozygously, in his father (A2) and his mother (A3) heterozygously. In the bottom of the electropherograms, the comparison
of three sequence with refrence sequence is shown. The deleted 16 bp is shown in red box
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Sanger sequencing was performed in order to exclude
GJB2 mutations and the following primers were used: F:
5′-CTCCCTGTTCTGTCCTAGCT-3′ and R: 5′-
CTCATCCCTCTCATGCTGTC-3′ [40]. Because there
was no positive family history of HL or other cognitive
disorders in the family, linkage analysis was not sought.

Whole exome sequencing and bioinformatic analysis
The Sample was sent to Macrogen (South Korea)
(https://www.macrogen.com/) and was subjected to
WES using the Novaseq 4000 platform (Illumina, San
Diego, CA, USA) with 151-bp paired-end reads. In sum-
mary, genomic DNA was fragmented to prepare Illu-
mina library and fragments were captured to target all
exons, splicing sites, and flanking intronic sequences of
all genes (Agilent SureSelect V6 post). All fragments
were amplified and then, sequencing was performed (the
mean depth of coverage was 100X for greater than 92%
of the sequences). For the studied sample, 57,006,242
reads were produced, and total read bases were 8.6G bp.
The GC content was 52.01% and Q30 was 93.47%. After
performing WES, the released raw data were converted
to the FASTQ file. Bioinformatic analysis included
GATK (Genome Analysis Toolkit) (https://gatk.broadin-
stitute.org/) for variant calling, BWA (Burrows-Wheeler
Aligner) (http://bio-bwa.sourceforge.net/) for genome
alignments and variant detection (hg19, NCBI Build 38)
and Picard to mark duplicate reads were used. Variant fil-
tering was performed based on Homozygous missense,
start codon change, splice site, nonsense, stop loss, and
indel variants with MAF < 1% in databases such as: dbSNP
version 147, 1000 genomes project phase 3 database
(https://www.internationalgenome.org/), NHLBI GO ex-
ome sequencing project (ESP) (https://evs.gs.washington.
edu/), exome aggregation consortium (ExAC) (http://exac.
broadinstitute.org) and Iranome (http://www.iranome.ir/).
After the filtration, the reported frameshift variant was

evaluated by different in silico software tools such as PRO-
VEAN (http://provean.jcvi.org/), PANTHER (http://www.
pantherdb.org/), MutationTaster (http://www.mutationta-
ster.org/), SIFT (https://sift.bii.a-star.edu.sg/) and CADD
(https://cadd.gs.washington.edu/) to predict its deleterious
effect on protein in terms of function. Furthermore, the
degree of conservation of this variants was assessed using
NCBI BLAST of several vertebrate species [41].

Variant confirmation
The candidate variant was confirmed using bidirectional
Sanger sequencing. Then, co-segregation analysis was
performed using exon-specific custom primers to exam-
ine segregation of genotype and HL phenotype among
the family members. PCR amplification and sequencing
of this variant were performed using the forward primer:
5′-GCATCCATCTCCCATGTCTT-3′ and the reverse

primer: 5′-CACCATCCAGCATCAGTC-3′ in exon 6.
Chromatograms were compared with reference sequence
(NM_001145308), encoding a 291 residue protein (NP_
001138780.1), using SeqMan software version 5.00©
(DNASTAR, Madison, WI, USA). Next, this variant was
investigated in the Human Gene Mutation Database
(HGMD) (http://www.hgmd.cf.ac.uk/) and the literature
to seek the novelty of the variant or its association with
HL. Variant nomenclature was based on Human Gen-
ome Variation Society (HGVS) [41]. The American Col-
lege of Medical Genetics and Genomics (ACMG)
guidelines were also used to classify this variant [42].
The MEGA6 software was used to check the conserva-
tion of the mutated region in several species.

Results
Clinical evaluations
The proband was a four-year-old boy who showed bilat-
eral profound NSHL, according to the audiological eval-
uations (Fig. 1c). Syndromic forms of HL were ruled out
in this family, based on the history and clinical examin-
ation in the patient. The proband was born to a consan-
guineous first-cousin couple after a full-term natural
delivery He showed no developmental delay or develop-
mental regression, based on medical reports and exami-
nations during pre-test genetic counseling. No genetic
disease other than HL was evident in the related pedi-
gree (Fig. 1). The CT scan results of Temporal Bone
were normal in the patient.
Results of auditory and speech performance indicate

good outcome of cochlear implantation in the patient
after 3 years with CAP score of 6 (understanding conver-
sation without lip reading) and SIR score of 5 (speech is
intelligible to all listener).

Molecular findings
Direct sequencing of the coding exon of the GJB2 gene
did not show any mutation. WES was applied and totally
672,262 variants were detected; one of them met the cri-
teria for further analyses.
As a result of WES, a homozygous deletion of 16 nucleo-

tides c.509_524del CAGTGGCTGAAAAACT (p.Ala170A-
lafs*20) in the LRTOMT gene was found. It causes
frameshift in exon 6 of this gene. It creates alternation of 20
amino acids downstream of the deletion and leads to an
early stop codon, resulting in a truncated protein with 170
residues (versus 291 residues in the intact protein). This de-
letion mutation was assessed as being deleterious by Muta-
tion Taster as well as several other prediction tools such as
SIFT, PROVEAN, PANTHER (Table 1). The frameshift
variant was absent from dbSNP version 147, 1000 genomes
project phase 3, NHLBI GO ESP, ExAC, Iranome, HGMD
and Clinvar databases. It was not found in the literature, ei-
ther. Ala170 and the following 20 amino acids that are
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modified in the mutated protein are located in a highly con-
served residue of LRTOMT in multiple-species alignment
(Fig. 3). It has been conserved among several species in-
cluding Pan troglodytes, Macaca mulatta, Mus musculus,
Rattus norvegicus and Xenopus tropicalis.
The variant co-segregated with the disease in the family:

heterozygous in parents, but homozygous in the patient
who was the only child of the family (Fig. 1d).
According to the ACMG guideline, that its evidence is de-

scribe below, this variant is classified as a pathogenic variant
(1 very strong, 2 Moderate and 1 Supporting criteria):

– It is a frameshift variant (a null variant) (PVS1).
– It is located in a mutational hot spot and/or critical

and well-established functional domain (PM1).
– This variant is absent from controls (or at extremely

low frequency if recessive) in Exome Sequencing
Project, 1000 Genomes Project, Exome Aggregation
Consortium and Iranome (local database) (PM2).

– Multiple lines of computational evidence supported
the deleterious effect of the variant on the gene or
gene product (conservation, evolutionary, splicing
impact, etc.) (PP3).

Table 1 In silico analysis of identified variants in the LRTOMT gene

Variant/genomic
Location

Exon Amio- acid alteration Database Software SIFT Mutation
Taster2.0

PROVEAN PANTHER

c.509_524del
(CAGTGGCTGAAAAACT)
Frameshift mutation
(Long InDel)

6 A170Afs*20 1000 G state Deleterious Disease-Causing Deleterious Deleterious

Not found

ExAC Score 0.894 NA −4.709 –

Not found

Fig. 2 Protein structure modeling of wild-type and mutated LRTOMT. a the merged image of wild-type LRTOMT is shown in purple and
mutanted LRTOMT in cyan. A part of the amino acid sequence has been eliminated in the mutated protein compared to the wild type protein
(b) the catechol-O-methyltransferase domain, as a functional domain, is shown in yellow and in the figure (c) the modified COMT domain in the
mutanted protein is defined in gray. The affected amino acids (residue 170–291) are a part of catalitic domain
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The 3-D structure of the LRTOMT protein (wild-type and
mutated forms)
PDB files of the wild type and mutated protein were
generated from protein structure prediction server
(http://ps2.life.nctu.edu.tw/). Then, UCSF Chimera ver-
sion 1.5.3 (https://www.cgl.ucsf.edu/chimera/) was used
to construct the 3D structure of both wild-type and the
mutant forms of LRTOMT. The pictures show a com-
parison between wild-type and mutant protein, the cata-
lytic domain (catechol-O-methyltransferase) that is
modified in the mutant protein (Fig. 2).

Discussion
Hearing loss (HL) is a common sensorineural disorder,
with an incidence of 1 in every 500–1000 children [43].
NSHL is a highly genetically heterogeneous neurosen-
sory disorder with over 163 known genes (http://heredi-
taryhearingloss.org/) [44]. Although mutations in the
GJB2 gene has been known to be the most common
cause of ARNSHL in Iran (about 18.5% of HL cases), the
role of other genes is remains to be illuminated [15, 45,
46]. Lack of accurate DNA diagnostics represents a real
challenge for NSHL diagnosis and genetic counselling
[47]. In this regard, NGS has addressed this problem
with generation of huge data from our genes in a rather
short time [48, 49].

In Iran, HL ranks second after intellectual disability
[15]. To date, few studies have been performed on
LRTOMT mutations in Iran and frequency of these mu-
tations is not exactly known among Iranian ARNSHL
patients [28, 50]. So far, about 20 pathogenic mutations
have been reported in the LRTOMT gene (Table 2). The
human LRTOMT gene (the DFNB63 locus) is located on
the chromosome 11q13.2-q13.4 and encodes the LRTOMT
protein. The locus DFNB63 was firstly mapped to the long
arm of chromosome 11 by Kalay et al, who reported a five-
generation Turkish family to be linked to this region [18].
Findings indicated that mouse Lrrc51 and Tomt are two
separate genes encoding 2 different proteins, and that hu-
man LRTOMT gene is a larger fusion gene with two differ-
ent transcripts [21]. The LRTOMT2 (residues 79 to 291)
protein has a transmembrane catechol-O-methyltransferase
(COMT) domain and is also known as COMT2, which is
highly expressed in sensory hair cells and the vestibular or-
gans of the inner ear [22]. The most important COMT do-
main is identified in the generic COMT protein that
catalyzes the transfer of a methyl group getting from S-
adenosyl methionine to catecholamines. It is associated
with inactivation of catecholamine neurotransmitters like
norepinephrine, dopamine and epinephrine [23, 57]. In a
study in 2008, the mouse model of Comt2 mutation was
generated and it was shown that mutation in this gene leads
to profound HL and vestibular defect [22]. By using a

Table 2 Overview of all LRTOMT mutations so far identified

Variant Codon number Exon number Phenotype Reference Population

p.Leu16Pro 16 4 Prelingual HL Du (2008) [22] Iranian

p.Ala29Serfs*54 29 4 NA Ahmed (2008) [21] Turkish

p.Met34Ilu 34 5 HL, non-syndromic Babanejad (2012) [28] Iranian

p.Ser35Serfs*13 35 5 Sensorineural HL Vanwesemael (2011) [51] Iranian

p.Glu40Asp 40 5 Prelingual profound HL Babanejad (2012) [28] Iranian

p.Arg41Trp 41 5 NA Babanejad (2012) [28] Iranian

p.Arg52Trp 52 5 Non-syndromic HL Wang (2017) [52] Pakistani

p.Arg54Gln 54 5 Prelingual moderate Ichinose (2015) [53] Japanese

p.Arg70X 70 5 Non-syndromic HL Riahi (2014) [54] Iranian

p.Tyr71X 71 5 Prelingual HL Du (2008) [22] Iranian

p.Glu80Asp 80 5 Non-syndromic HL Babanejad (2012) [28] Iranian

p.Arg81Gln 81 5 Non-syndromic HL Ahmed (2008) [21] Tunisian

p.Arg81Trp 81 5 Non-syndromic HL Babanejad (2012) [28] Iranian

p.Phe83Lue 83 5 NA Marková (2016) [55] Czech

p.Trp105Arg 105 5 Non-syndromic HL Ahmed (2008) [21] Tunisian

p.Glu110Lys 110 5 Non-syndromic HL Ahmed (2008) [21] Tunisian

p.Tyr111X 111 5 Non-syndromic HL Du (2008) [22] Iranian

p.Ala170Alafs*20 170 6 Non-syndromic HL This study Iranian

p.Ilu188Thrfs*7 188 7 Prelingual moderate Ichinose (2015) [53] Japanese

p.Arg219X 219 7 Severe-profound NSHL Sloan-Heggen (2016) [56] Not defined

NA Not Available
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zebrafish model, Erickson et al in 2017 showed that the de-
fect in auditory and vestibular systems due to mutations in
LRTOMT gene. It led to a lack of mechanotransduction
(MET), a process in which sensory hair cells convert mech-
anical energy such as vestibular and auditory stimulation to
electrical signals [58]. The TMC (Transmembrane channel-
like) gene appears to be the most promising candidates to
be the precursor of MET channel [59–62]. In humans, mu-
tations in TMC1 gene are responsible for both recessive
(DFNB7/11) and dominant (DFNA36) forms of NSHL [63].
Using the mercury mutant zebrafish, as a model of
DFNB63, Erickson reported that LRTOMT is required for
trafficking TMC proteins to the hair bundle [58, 64].
In several studies, it has been reported that NSHL due

to mutations in the LRTOMT gene are more likely to be
assigned to the LRTOMT2 (COMT2) region rather than
LRTOMT1 [28, 51]. These findings indicate mutations
in LRTOMT2 are associated with hair cell defects and
lead to severe-to-profound NSHL [21, 29, 30, 53]. Pa-
tients with mutations in the LRTOMT gene have been
reported exclusively from the Middle Eastern consan-
guineous families [19, 20, 28, 50]. The majority of re-
ported mutations occurred in exon 5 and 7 of the
LRTOMT2 coding region. Therefore, this region might
be a mutational hot spot in the LRTOMT gene [9, 53].
In this study, a consanguineous family with a son suffer-

ing from bilateral sever-to-profound HL and negative for
GJB2 gene mutations was selected for further study using
WES. As a result, a novel long deletion variant (16 bp de-
letion) in the exon 6 of LRTOMT gene (NM_001145308)
was found homozygously in the patient and heterozy-
gously in the parents. It is a novel frameshift mutation
(deletion of 16 nucleotides) in the LRTOMT gene, which
has dual reading frames (ENST00000307198.7). In this
transcript of LRTOMT gene, LRTOMT2 starts in exon 5
and ends in exon 7. The main portion of the catalytic do-
main (residues 79–291) of LRTOMT2 is eliminated as a
result of this mutation (Fig. 2). The premature stop codon
(20 codons after the position of the deletion) is predicted
to result in a truncated protein with impaired function or

no protein production, possibly because of nonsense me-
diated mRNA decay. The mutation region is a partly con-
served in human and mice (Fig. 3), suggesting that the
eliminated region is important for the catalytic functions
of the enzyme.
Evaluation of auditory and speech performance in this

study is in line with those of previous studies, suggesting
that patients with LRTOMT mutations show good audi-
tory performance after cochlear implant surgery [65].

Conclusions
In conclusion, our results suggest that mutations in the
LRTOMT gene result in alterations in the LRTOMT2
(COMT2) protein and might be involved in sever-to-
profound NSHL. The gene should be studied in a larger
population of families in Iran for a more thorough un-
derstanding of its role in causing HL. This study showed
that exome sequencing is an efficient molecular diagnos-
tic method for ARNSHL as an extremely heterogeneous
genetic disorder.
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