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Abstract

Background: Joubert syndrome (JBTS) is a genetically heterogeneous group of neurodevelopmental syndromes
caused by primary cilia dysfunction. Usually the neurological presentation starts with abnormal neonatal breathing
followed by muscular hypotonia, psychomotor delay, and cerebellar ataxia. Cerebral MRI shows mid- and hindbrain
anomalies including the molar tooth sign. We report a male patient with atypical presentation of Joubert syndrome
type 23, thus expanding the phenotype.

Case presentation: Clinical features were consistent with JBTS already from infancy, yet the syndrome was not
suspected before cerebral MRI later in childhood showed the characteristic molar tooth sign and ectopic
neurohypophysis. From age 11 years seizures developed and after few years became increasingly difficult to treat,
also related to inadequate compliance to therapy. He died at 23 years of sudden unexpected death in epilepsy
(SUDEP). The genetic diagnosis remained elusive for many years, despite extensive genetic testing. We reached the
genetic diagnosis by performing whole genome sequencing of the family trio and analyzing the data with the
combination of one analysis pipeline for single nucleotide variants (SNVs)/indels and one for structural variants
(SVs). This lead to the identification of the most common variant detected in patients with JBTS23 (OMIM# 616490),
rs534542684, in compound heterozygosity with a 8.3 kb deletion in KIAA0586, not previously reported.

Conclusions: We describe for the first time ectopic neurohypophysis and SUDEP in JBTS23, expanding the
phenotype of this condition and raising the attention on the possible severity of the epilepsy in this disease. We
also highlight the diagnostic power of WGS, which efficiently detects SNVs/indels and in addition allows the
identification of SVs.
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Background
Joubert syndrome (JBTS, OMIM# 213300) [1] is a rare
disease with autosomal recessive inheritance, caused by
the dysfunction of primary cilia and presenting as a neu-
rodevelopmental syndrome [2]. Typical manifestations of
the disease include neonatal breathing anomalies, hypo-
tonia, cognitive impairment, cerebellar ataxia, and a
complex mid- and hind-brain malformation visible as a
molar tooth sign on axial cerebral MRI scans, which is a
diagnostic signature finding in JBTS. Non-neurological
manifestations, including cystic kidneys, liver disease,
retinal dystrophy, chorioretinal colobomas, and polydac-
tyly, may also be present. The disease is genetically het-
erogeneous with more than 35 genes currently known to
cause it when mutated [3]. Among those genes,
KIAA0586 (OMIM# 610178) has been documented to
cause JBTS23 (OMIM# 616490). Biallelic variants in
KIAA0586 are responsible of 2.5–7% of all patients with
JBTS [4, 5]. In addition to JBTS23, dysfunction of
KIAA0586 may cause a more severe ciliopathy known as
Short-rib thoracic dysplasia 14 with polydactyly
(SRTD14; OMIM# 616546), a complex syndrome with
skeletal and neurological manifestations [6].
The KIAA0586 protein plays a central role in cilia for-

mation. Primary cilia function as cellular antennae and
are required for several signaling pathways essential for
tissue growth and differentiation. KIAA0586 is a centro-
somal protein, located at the distal ends of both the
mother and daughter centrioless [7]. During cilia forma-
tion, KIAA0586 is crucial for the maturation of the
mother centriole, through centriolar satellite dispersal
and assembly of the basal body distal appendages, and
basal body docking to the plasma membrane [8].
KIAA0586 functions upstream of the small GTPase
Rab8 required for docking of the basal body to the
plasma membrane [8, 9].
We present a Norwegian male patient with JBTS23.

The genetic diagnosis was reached by performing whole
genome sequencing (WGS) of the family trio, and ana-
lyzing the data with two distinct analysis pipelines one
for single nucleotide variants (SNVs)/indels and one for
structural variants (SVs). This allowed us to identify two
pathogenic variants in KIAA0586 and give the patient
the genetic diagnosis of JBTS23. The patient developed
epilepsy and died in early adulthood. Cerebral MRI reve-
lead the presence of ectopic neurohypophisis, which has
not been previously reported in JBTS23. We therefore
expand the clinical phenotype and highlight the possible
severity of epilepsy in JBTS23.

Case presentation
We report a male patient who was the younger of two
siblings born to non-consanguineous parents from
Norway. The elder sibling and his parents were healthy.
Initially, the patient presented with infantile episodes of
apnea and tachypnea with hypotonia and global develop-
mental delay. He manifested abnormal eye movements
with oculomotor apraxia and Duane anomaly (Fig. 1),
and cerebellar ataxia. Cerebral MRI showed the “molar
tooth sign” characterized by elongated, thickened
superior cerebellar peduncles, vermian hypoplasia and
abnormal deep interpeduncular fossa (Fig.2a-d), neuro-
anatomical hallmarks of JBTS as well as ectopic neuro-
hypophysis (Fig.2e-f). He had learning difficulties and
when tested with a Wechsler Intelligence Scale for Chil-
dren (WISC) he obtained a score of IQ 72. At 11 years
he was diagnosed with epileptic seizures, at first only oc-
curring at night, and had therefore escaped recognition
for almost a year. He was admitted for the first time at
11 years and 9months with a nocturnal generalized tonic
clonic seizure (GTCS) and was started on Oxcarbaze-
pine, which kept him almost seizure free for several
years. This drug was tapered at 18 y, but soon after his
epilepsy recurred, now manifesting both as GTCS and
absences. Oxcarbazepine was reinstituted, but absences,
sometimes with myoclonus, persisted, and treatment
was changed to Valproate. However, GTCS increased in
frequency, often followed by prolonged headaches that
did not clear before the next day. His treatment was
then changed to Lamotrigine, which he however was re-
luctant to take. He was living alone and managed to at-
tend shelter work. At 22 years he was recognized to have
two seizure types, GTCS and sensory epilepsy, the latter
manifesting as abrupt abdominal discomfort, considered
to be of temporal lobe origin. Nocturnal GTCS occurred
2–3 times per week and were often initiated by yawning
and drooling and ending with vomiting, followed by
drowsiness for the rest of the day. At 23 years one morn-
ing he was found dead in bed and according to his
mother he laid in a flexed position that was usual for
him after having a seizure. Postmortem examination
concluded with no trace of Lamotrigine in his blood.
The fatal outcome was classified as sudden unexpected
death in epilepsy (SUDEP) [10], and was suspected to
have been precipitated by the lack of compliance to anti-
convulsive treatment.

Genetic investigations
Microarray and whole exome sequencing (WES) data
analysis of the family trio did not identify any putative
pathogenic variants explaining the disease (data not
shown); therefore, we performed WGS of the family trio
(methods are described in the Additional file 1). We
reached the genetic diagnosis of the patient combining
two WGS data analysis pipelines. First, we analyzed
SNVs/indels, which were called on the patient-parent
trio data using Genome Analysis Toolkit (GATK) v.3.4.
Haplotype Caller in GVCF model. The first analysis with



Fig. 1 Photograph of the patient at the age of 11 years showing Duane (retraction) anomaly: when gazing to the left, the globe of the adducting
right eye is retracting and when gazing to the right, the globe of the adducting left eye is retracting. Lateral eye movement to either side is
limited because the corresponding abducens nerve nucleus inadequately innervates the lateral rectus muscle, resulting in globe retraction and
narrowing of the palpebral fissure
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this pipeline identified a maternally inherited frameshift
variant in KIAA0586 (NM_001244189), chr14 (GRCh37):
g.58899157delG (c.428delG) (Fig. 3a), rs534542684, pre-
dicted to form a premature stop codon (p.Arg143Lysfs*4),
which was verified by Sanger sequencing. This variant, was
previously reported as pathogenic [5, 11–13]. Pathogenic
variants in KIAA0586 cause two distinct autosomal reces-
sive diseases [4–7, 11–13]. One is the Short-rib thoracic
dysplasia 14 with polydactyly (SRTD14; OMIM# 616546), a
complex syndrome with skeletal and neurological
Fig. 2 a-d Molar tooth sign in JBTS. Axial (a), coronal (b) and sagittal (c) T1
peduncles (arrows). Note a deep interpeduncular fossa (white arrowhead) a
image shows vermian hypoplasia (white arrowhead). e-f Ectopic posterior p
show a posterior pituitary lobe (arrow) located at the level of the upper inf
the right upper corner of E).
manifestations [6]. The other is JBTS23 (OMIM# 616490).
As the variant could not explain the recessive phenotype,
we subsequently used a data analysis pipeline for structural
variants (details in the Supplementary information), which
detected a paternally inherited 8.3 kb deletion in chr14
(GRCh37):g.58910278–58918611 according to variant call-
ing of the high throughput sequencing data. The deletion
lead to removal of exons 8, 9 and 10 in KIAA0586 (NM_
001244189), predicted to cause direct splicing of exon 7 to
11 in the transcript, leading to a frameshift and formation
-weighted images show large, thickened, elongated superior cerebellar
nd the vermian cleft (black arrowhead). Midsagittal (d) T1-weighted
ituitary lobe. Postcontrast sagittal and coronal T1-weighted images
undibulum. A very thin infundibulum is seen (asterisk) (magnified in



Fig. 3 a Upper. WGS data in Integrative Genome Viewer (IGV) (http://software.broadinstitute.org/software/igv) showing the heterozygous 1 bp
deletion in KIAA0586 in the patient and his mother, but not in the father (red oval). Lower. Sanger sequencing on DNA from blood of the patient
verifying 1 bp deletion in KIAA0586. R = A or G (as a consequence of the heterozygous deletion of G followed by A). b Upper. Screenshot from
the IGV showing the 8.3 kb deletion in KIAA0586 detected in heterozygosity in the patient and his father, but not in the mother (red square)
removing exons 8, 9 and 10 in KIAA0586 (blue boxes in the bottom). Note the decreased coverage in the deleted region in the patient and his
father (red vertical arrows) and the reads with ends spanning the deletions (in red). Lower. Sanger sequencing of DNA from blood of the patient
verified the 8.3 kb deletion in KIAA0586 and re-defined its breakpoints slightly to chr14 (GRCh37):g.58910301–58,918,610.
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of a premature stop codon (p.Val249Glufs*3). Deletions of
this genomic region has not previously been described
(Database of Genomic Variants, http://dgv.tcag.ca and
Decipher, https://decpher.sanger.ac.uk). Sanger sequencing
analysis verified the segregation of this deletion with the
disease in the family and re-defined the breakpoints of the

http://dgv.tcag.ca
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SV slightly to chr14 (GRCh37):g.58910301–58918610 (Fig.
3b). The discrepancy in the break-end calculation can be at-
tributed to the Manta base-pair resolution capability [14].
The clinical presentation of the patient was compatible with
JBTS23. Thus, we identified pathogenic compound hetero-
zygous variants in KIAA0586 by applying two distinct ana-
lysis pipelines on the WGS data, and confirmed the patient
with JBTS23. We did not identify additional deleterious var-
iants in other known JBTS causing genes in WES or WGS
data.

Discussion and conclusions
We report a patient with biallelic variants in KIAA0586,
causing JBTS23. The maternal KIAA0586 variant,
c.428delG, known as rs534542684, is reported with
minor allele frequency (MAF) 0.003 in the Exome Ag-
gregate Consortium (ExAC) and in the Genome Aggre-
gation database (gnomAD). Surprisingly, this variant has
been identified in homozygosity in two healthy individ-
uals in the European population in gnomAD and in one
healthy homozygous female. In this female the
KIAA0586 c.428delG transcript was shown to elude the
nonsense-mediated decay (NMD) mechanism [12]. It
was suggested that the allele carrying rs534542684 could
function as a hypomorphic allele, possibly by the use of
an alternative start codon downstream of the variant
[12]. It is interesting to note that c.428delG is the most
frequently identified variant in JBTS23, usually present
in compound heterozygosity, less often in homozygosity
[5, 13]. In our patient the second allele harbored a dele-
tion removing exons 8–10.
Patients with JBTS23 present with neonatal breathing

pattern anomalies, global developmental delay, intellec-
tual disability, and brain malformations, including the
molar tooth sign. In addition to the typical JBTS23 pres-
entation, our patient manifested with Duane anomaly,
previously reported only in one case [13]. Interestingly,
the patient suffered from epilepsy and had an ectopic
neurohypophysis. The last feature has never been re-
ported in patients with JBTS23.
Epilepsy is reported only in patients with mutations in

five of the known JBTS causing genes: CC2D2A causing
JBTS9 (OMIM# 612285), KIF7 causing JBTS12 (OMIM#
200990), KIAA0586 causing JBTS23 (OMIM# 616490),
ARMC9 causing JBTS30 (OMIM# 617622), and B9D2
causing (OMIM# 614175). None of the animal models
targeting KIAA0586 orthologues so far reported mani-
fested epilepsy [15]. Among the 42 JBTS23 patients so
far reported [4, 5, 7, 11–13], only two suffered from epi-
lepsy [7, 11], and SUDEP has not been reported. How-
ever, the patient presented several clinical risk factors
for the occurrence of SUDEP, such as being a male with
a history of seizures from a young age, often nocturnal
GTCS, borderline intellectual disability, and living alone
not complying to the treatment [10]. In particular, the
combination of frequent nocturnal GTCS and sleeping
alone was showed to dramatically increase the risk of
SUDEP [16]. In general mortality in JBTS has not been
related to epilepsy, but rather to renal or respiratory
failure [17], however the recent management recom-
mendations for patients with JBTS specifically men-
tion seizures [3].
Our patient is the first to be reported with deleterious

variants in KIAA0586 and ectopic neurohypophysis. The
ectopic neurohypophysis is a midline brain malformation
consisting of an aberrant pituitary development with an
ectopically located posterior pituitary gland. This brain
malformation can be associated with endocrinological
defects ranging from isolated growth hormone deficiency
to multiple anterior pituitary hormone deficiencies, but
posterior pituitary function remains unchanged. How-
ever, our patient had a normal endocrinological profile.
It was proposed that the occurrence of the ectopic
neurohypophysis in ciliopathies might be caused by the
role of the cilia in influencing pituitary development
through SHH and Wnt signaling pathways [18].
In conclusion, we identified compound heterozygous

variants in KIAA0586 in a patient with JBTS23, present-
ing with ectopic neurohypophysis and juvenile onset of
epilepsy, which was difficult to treat and resulted in
SUDEP. We expand the phenotype of JBTS23 since
these features have not previously been reported in this
disease. Although we report a single patient, we suggest
that the onset of epilepsy in patients with JBTS23 should
be promptly evaluated and treated, and deserve close
monitoring, to reduce the risk of an adverse outcome.
Our results highlight the value of WGS when combining
different pipelines of analysis to detect SNVs/indels and
larger structural variants below the resolution of diag-
nostic microarrays.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12881-020-01024-y.

Additional file 1. Details of the methods for the genetic investigations.
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