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Abstract

Background: Increasingly, molecular measurements from multiple studies are pooled to identify risk scores, with
only partial overlap of measurements available from different studies. Univariate analyses of such markers have
routinely been performed in such settings using meta-analysis techniques in genome-wide association studies for
identifying genetic risk scores. In contrast, multivariable techniques such as regularized regression, which might
potentially be more powerful, are hampered by only partial overlap of available markers even when the pooling of
individual level data is feasible for analysis. This cannot easily be addressed at a preprocessing level, as quality criteria
in the different studies may result in differential availability of markers – even after imputation.

Methods: Motivated by data from the InterLymph Consortium on risk factors for non-Hodgkin lymphoma, which
exhibits these challenges, we adapted a regularized regression approach, componentwise boosting, for dealing with
partial overlap in SNPs. This synthesis regression approach is combined with resampling to determine stable sets of
single nucleotide polymorphisms, which could feed into a genetic risk score. The proposed approach is contrasted
with univariate analyses, an application of the lasso, and with an analysis that discards studies causing the partial
overlap. The question of statistical significance is faced with an approach called stability selection.

Results: Using an excerpt of the data from the InterLymph Consortium on two specific subtypes of non-Hodgkin
lymphoma, it is shown that componentwise boosting can take into account all applicable information from different
SNPs, irrespective of whether they are covered by all investigated studies and for all individuals in the single studies.
The results indicate increased power, even when studies that would be discarded in a complete case analysis only
comprise a small proportion of individuals.

Conclusions: Given the observed gains in power, the proposed approach can be recommended more generally
whenever there is only partial overlap of molecular measurements obtained from pooled studies and/or missing data
in single studies. A corresponding software implementation is available upon request.

Trial registration: All involved studies have provided signed GWAS data submission certifications to the U.S.
National Institute of Health and have been retrospectively registered.
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Background
An increasing number of high-dimensional molecular
measurements from individuals are generated and data
from such studies are frequently combined to identify
markers of disease risk. For example, combining case-
control studies with measurements of single nucleotide
polymorphisms (SNPs) into large genome-wide associa-
tion studies (GWAS) has allowed investigations into even
very rare risk variants for some diseases [1]. Some of
these consortia, such as the InterLymph Consortium on
non-Hodgkin lymphoma (NHL) [2–9], not only allow for
combining aggregate per-SNP statistics from each partic-
ipating study, but provide individual level data from all
studies for joint analysis. This opens the way for more
sophisticated analyses, but any approach must contend
with only partial overlap of the SNPs available from dif-
ferent studies due to differences in genotyping platform,
quality control, and imputation approaches.
More and more multivariate methods for the analysis

of high-dimensional case-control data arose in the past
years. For example, [10] suggested an approach based on
group lasso, and [11] considers a hybrid approach com-
bining linear mixed models and sparse regression models,
a so-called Bayesian sparse linear mixed model.
Further, regularized regression, such as the lasso

[12] or componentwise boosting [13, 14], also pro-
vides an alternative to univariate approaches in that it
takes SNP correlation structure into account and can
directly provide genetic risk scores. [15] showed that
those approaches outperform univariate analysis. Also,
type 1 error control has recently been established for
such approaches (see, e.g., [16, 17]), eliminating one
of their major weaknesses. While univariate methods
based on meta-analyses of per-SNP regression mod-
els can deal with partial overlap of SNP data in a
straightforward manner, multivariable approaches typi-
cally require complete data on all individuals. This is
often unfeasible in the context of large collaborative
efforts.
Motivated by applications within the InterLymph Con-

sortium, we addressed this issue by adapting a regularized
regression approach, specifically componentwise boost-
ing, for scenarios with partial overlap of SNP data and pos-
sibly differential missing individual level data per study.
This is achieved by re-formulating the approach in terms
of pairwise covariances, which can then be computed
using all available SNP measurements. The focus of this
article is to investigate how our methodology performs
on a combined dataset from different studies, all enrolling
their own individuals, and to contrast it with results from
univariate analyses and an application of the lasso. See
[18] on how to integrate multiple molecular sources in
the presence of partial overlap in molecular data and
individuals.

In the following, we briefly describe the data from the
InterLymph Consortium and then propose the adapta-
tion of componentwise boosting for synthesis regression
in the Methods section. We also describe a stability selec-
tion approach for controlling the type 1 error. In the
Results section, we illustrate the approach for the Inter-
Lymph data, in particular comparing its power to a naive
approach that discards the studies causing the partial
overlap as well as to univariate analyses. Finally, some
discussion and concluding remarks onmore general appli-
cability in settings where data from several studies are to
be combined, are provided.

Methods
The InterLymph application
The InterLymph Consortium (International Consortium
of Investigators Working on Non-Hodgkin Lymphoma
Epidemiologic Studies) is an open scientific forum for
epidemiologic research on mature B-cell malignancies,
including NHL. Formed in 2001, the Consortium is a
group of international investigators who have completed
or are in charge of ongoing case-control studies and
who discuss and undertake collaborative research projects
that pool data across studies to elucidate the etiology of
lymphoma.
In the past few years, the genetics working group of the

consortium has been engaged in large-scale GWAS, tar-
geting among others the most prevalent NHL subtypes,
chronic lymphocytic leukemia (CLL), diffuse large B-cell
lymphoma (DLBCL), and follicular lymphoma (FL). For
an investigation into the etiological relevance of genetic
variability in epigenetic enzymes and regulators for NHL
risk, the consortium provided imputed data for 366 pre-
selected genes for all three subtypes from a total of 29
study sites, covering 8,628 cases and 8,748 controls. Part
of this data restricted to the CLL andDLBCL subtypes will
be used to illustrate the method developed here. Also, we
pre-selected a specific chromosome, i.e. the results should
not be interpreted from a biological perspective, but serve
as illustration purposes of the proposed method. More
comprehensive analyses from a subject matter perspective
are ongoing.
In the InterLymph Consortium, the choice of dif-

ferent genotyping platforms, for example the Illumina
OMNIexpress-24 BeadChip or the Illumina OMNI2.58
BeadChip, resulted in studies which lacked complete SNP
overlap. In theory, imputing the data and performing an
analysis based on the superset of all SNPs available in any
of the studies would be favored. This can, however, not
always be guaranteed because usually only high-quality
imputed SNPs are taken into account. These may vary
due to platform-specific differences in the coverage of
genomic regions, which in turn leads to non-concordant
SNPs.
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Synthesis regression
Molecular data from case-control designs are frequently
analyzed by univariate approaches. Despite such initial
univariate analyses, the markers identified from case-
control studies frequently feed into multi-SNP genetic
risk scores. Multivariable approaches that can perform
variable selection are able to directly provide such risk
scores, specifically taking correlation between markers
into account.
The underlying idea in our setting is to construct a

stable multivariable genetic risk score by selecting those
SNPs that best explain the outcome. In such situations,
regularized regression approaches can perform variable
selection to obtain sparse models. Such approaches are
widely used in high-dimensional data settings, when clas-
sical maximum likelihood estimation fails. Specifically for
SNP data, approaches such as the lasso [12] or componen-
twise likelihood-based boosting [13] have been suggested.
We use the latter as a basis for a synthesis regression
approach [19] that can deal with partial overlap of the
molecular data to address a challenge likely encountered
when data are pooled from several studies, such as in the
context of the InterLymph Consortium.
An advantage of componentwise boosting, compared

to black-box approaches, is that it can be expressed in
terms of univariate estimators. Therefore, we will briefly
introduce the corresponding univariate estimators before
subsequently describing componentwise boosting and its
adaptation to partial overlap settings.

The model and univariate estimators
In the following, we consider a set of in total p SNPs across
k studies, the superset of all SNPs. Corresponding to a par-
tial overlap scenario, let us further assume that covariate
j (j = 1, . . . , p) corresponding to a specific SNP is only
present for kj out of the k studies. Let Kj = {l ∈ {1, . . . , k} :
covariate j is present for study l}, |Kj| = kj, be the set of
studies comprising covariate j, and nl the number of indi-
viduals in study l = 1, . . . , k. Thus, in total, covariate j is
present for nj = ∑

l∈Kj nl individuals.
We assume additive coding, e.g. SNP values are avail-

able as 0, 1, and 2. Therefore, we have a single covariate xlij
of a SNP j = 1, . . . , p for patient i = 1, . . . , nl from study
l = 1, . . . , k. In the following, the SNP values are assumed
to be centered and standardized, such that

∑nl
i=1 x

2
lij =

nl. Such a standardization to equal variance is not spe-
cific to the present proposal but is typical for regularized
regression approaches.
Cases and controls are treated like in logistic regres-

sion to determine whether some markers occur more
frequently in cases than in controls (and the other way
around). In order to obtain such an outcome yli for our
regression model, the case-control status is coded as 1 for
cases and −1 for controls and centered per study. The

centering could be omitted, but it allows the intercept
terms to subsequently be ignored. For simplified notation,
we will still refer to values 1 and −1 in the following.
To investigate whether SNPs are linked to the case-

control outcome, i.e. whether they should be considered
as risk markers, we use a linear model

E(Y = y|X = x) = x′β , (1)

where x is a vector comprising one or more of the SNP
covariates, and β is a corresponding parameter that is to
be estimated. This is non-standard, but allows for analyt-
ical tractability in the following. As we deal with a binary
outcome, this is a quasi-likelihood approach, e.g. as com-
pared to a logistic regression model. Yet, the linear model
will typically provide non-zero estimates for β whenever
they would also have been provided by a logistic regres-
sion model, i.e. the linear model should be sufficient for
marker selection. At the same time, it enables a simple
presentation and adaptation for partial overlap settings, as
shown in the following.
If only a single SNP at a time is considered in model

(1), a separate parameter β̂lj is estimated for each SNP (j)
and study (l), while the univariate estimate for βlj takes the
form

�lj = 1
nl

nl∑

i=1
xlijyli

= 1
nl

∑

i∈{1,...,nl}:
yi=1

xlij − 1
nl

∑

i∈{1,...,nl}:
yi=−1

xlij
(2)

being, up to a constant factor, the mean difference
between SNP values in cases and SNP values in controls.
This statistic can be pooled across studies, where a SNP is
provided by using inverse variance weighting as has been
established in a GWAS setting. The resulting joint statistic
(up to a constant factor, assuming equal error variance) is

�j = 1
∑

l∈Kj nl

∑

l∈Kj

nl�lj

= 1
nj

∑

l∈Kj

nl∑

i=1
xlijyli,

(3)

i.e. an average of the per-study mean differences, corre-
sponding to the calculation of the least squares estimates
pooling all individuals where SNP j has been measured.
While such a statistic is not commonly used in practice,

it is expected to result in SNP rankings similar to rank-
ings obtained from standard statistics. The advantage of
this non-standard statistic is that it provides a straight-
forward link to multivariable approaches, as shown in the
following.
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Stagewise regression
Componentwise likelihood-based boosting [13] is a stage-
wise approach for estimating multivariable regression
models, i.e. when x in model (1) comprises all SNPs. This
approach performs variable selection by delivering esti-
mates β̂ = (β1, . . . ,βp)′ withmany elements equal to zero.
It is closely linked to (forward) stagewise regression, being
more cautious than classical (forward) stepwise selection,
i.e. the final model is built in very small steps [20]. Due to
this relation, the resulting variable selection is similar to
the lasso, but tends to be more robust in the presence of
strong linkage disequilibrium of the SNPs [13]. Therefore,
we used this approach as a basis for synthesis regression
in a setting with partial overlap.
The basic idea of componentwise likelihood-based

boosting is to start with an initial estimate for the param-
eter vector β with all elements set to zero, i.e. none of
the SNPs is part of the genetic risk score. Subsequently, in
each of a number of steps, a single element of the param-
eter vector is selected to be updated when accounting for
the SNPs that have been selected in earlier steps by an
offset term, or equivalently, when considering the results
from the previous step as an outcome. In doing so, the
correlation between covariates is incorporated.
More formally, the boosting algorithm is as follows for

each boosting stepm = 0, . . . ,M:

1. For each covariate j, we determine the parameter
estimate γ̂j from a univariate regression model,
taking previous boosting steps into account (more
details given below).

2. Determine the index j∗ of covariate j with maximum
value for

(
γ̂

(m+1)
j

)2
which corresponds to the score

statistic.
To get a weak learner, set γ̄

(m+1)
j = ν · γ̂ (m+1)

j , where
0 ≤ ν ≤ 1 is a shrinkage parameter fixed in advance
[21].

3. Update the parameter estimates

β̂
(m+1)
j =

{
β̂

(m)
j + γ̄

(m+1)
j if j = j∗

β̂
(m)
j else.

(4)

This iterative procedure is stopped when the chosen stop-
ping criterion is met. This could be, for example, a pre-
defined number of covariates having non-zero estimates
(the number of SNPs to be selected) or a pre-specified
number of boosting steps [22].
We first consider the estimation per study, which

requires specification of γ̂
(m+1)
lj . A regression model for

the residuals r(m)

li = yli − ŷli = yli − x′
liβ

(m) results in the
following parameter estimate of the candidate model:

γ̂
(m+1)
lj = 1

nl

nl∑

i=1
xlijr(m)

li

= 1
nl

nl∑

i=1
xlij

(
yli − ŷ(m)

li

)

= 1
nl

nl∑

i=1
xlijyli

− 1
nl

∑

k:|β̂(m)

k |>0

β̂
(m)

k

nl∑

i=1
xlijxlik

=�lj − 1
nl

∑

k:|β̂(m)

k |>0

β̂
(m)

k

nl∑

i=1
xlijxlik .

(5)

This can be interpreted as a decorrelation based on the
estimated effects of the other SNPs, or alternatively as
adjusting the (scaled) difference of means �lj for effects
that are due to other SNPs already included in the model.
Furthermore, this parameter estimate of the candidate

model only depends on the univariate statistic �lj and the
(scaled) covariance 1

nl
∑nl

i=1 xlijxlik . This implies a straight-
forward way for estimating γ

(m+1)
j , pooled across studies

where SNP j is available. Specifically, building on the uni-
variate meta-analysis ideas described above, we propose
using

γ̂
(m+1)
j = 1

nj

∑

l∈Kj

nl∑

i=1
xlijyli

− 1
nj

∑

k:|β̂(m)

k |>0

β̂
(m)

k

∑

l∈Kj

nl∑

i=1
xlijxlik

= �j − 1
nj

∑

k:|β̂(m)

k |>0

β̂
(m)

k

∑

l∈Kj

nl∑

i=1
xlijxlik ,

(6)

i.e. not only the (scaled) differences are pooled, but also
the covariances.
In this way, our proposal for synthesis regression is

based only on pairwise covariances. This enables us to
incorporate the data of several datasets at the same time.
More precisely, all information on a specific covariate j
that is available in the different studies can be utilized —
irrespective of whether data for this covariate are available
in only one, several, or all studies.

Stability Selection
Application of covariance-based boosting for synthesis
regression leads to a selection of SNPs from (pooled)
molecular data. However, the approach itself does not
allow for type 1 error control. The so-called stability selec-
tion [16] is a tool to approach the question of statistical
significance in situations where subsampling is combined
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with variable selection. Judging the relevance of the (sig-
nificant) effects is a different issue not considered in the
scope of these investigations.
We refer to subsampling as a resampling method where

B subsamples of all studies are drawn randomly without
replacement[23]. The size of the subsamples is set to n/2,
n being the size of the full sample. Below, we use the inclu-
sion frequency (IF) to detail how frequently a SNP has
been selected in all B subsamples.
The idea of the approach is to find out whether the vari-

ables selected more often than others over all subsamples
are selected in a way that the type 1 error is controlled for.
In the following, we will detail the approach, which can be
directly applied to our synthesis regression proposal.
E(V ), the expected number of false positives or per-

family error rate, is bounded by a value determined from
the resampled data and the variable selection procedure:

E(V ) ≤ 1
2πthr − 1

· q
2

p
, (7)

where V is the number of false positives, p is the total
number of covariates and q is the average number of
selected covariates over all B subsamples in the last step
M of the variable selection procedure [16]. πthr ∈ (0.5, 1)
denotes the threshold on the IF in B subsamples for call-
ing a SNP significant. In general, different values for πthr
should be considered, as they correspond to different type
1 error levels.
When the chosen parameters and results from resam-

pling provide for E(V ) ≤ 0.05, the familywise error rate
P(V ≥ 1) is controlled at the 5% level since P(V ≥ 1) ≤
E(V ) ≤ 0.05.

Results
In order to illustrate the use of covariance-based boost-
ing as a synthesis regression approach in combination
with stability selection, we use just an excerpt of the data
from the InterLymph Consortium on CLL and DLBCL,
two specific subtypes of NHL [3]. All analyses are based
on SNP data for chromosome 9 still containing missing
values for some SNPs even after imputation. The follow-
ing section shows that by using the proposed method, all
applicable information is taken into account during the
analysis.
Figure 1 schematically shows different settings of SNP

coverage for imputed SNP data when considering a com-
bination of two studies, not showing potentially missing
information for single SNPs per study. In Fig. 1b we con-
sider a scenario where both studies comprise the same
SNPs. Thus, even multivariable analysis approaches that
require a complete case setting can be applied without
problems if no missings are present. However, this is a
"perfect world" setting.

The coverage of SNPs often differs between the stud-
ies due to different genotyping platforms. These dif-
ferences often remain even after imputation. Depend-
ing on the multivariable analysis approach, an analysis
might be able to incorporate all available information
(Fig. 1c) or only provides a complete case analysis (Fig. 1d).
For example, standard componentwise likelihood-based
boosting would only use the complete case information
as in Fig. 1d. Our newly developed boosting method can
take into account all applicable information visualized in
Fig. 1c, including information from individuals with miss-
ing values for single SNPs even after imputation due to
inadequate imputation quality (not shown in Fig. 1 for
convenience only). As stated previously, covariance-based
boosting can also address other constellations where, e.g.,
no single study comprises all SNPs that are present in any
of the investigated studies.
Subsequently, we will detail two specific applications

of synthesis regression on data from the InterLymph
Consortium to illustrate the consequences of different
scenarios. The first considers artificial removal of some
SNPs, where the analysis of the original data with synthe-
sis regression is used as reference. To contrast synthesis
regression with the lasso, we further applied both meth-
ods to the mode imputed data. The second application
considers a combination of studies that truly have only
partial overlap. In both scenarios, the number of boosting
steps is set to 200 and we sample without replacement n/2
observations from the respective dataset (n observations).

Application 1
Differential SNP coverage and considerably varying sam-
ple sizes are routine in consortial data. In a situation with
two studies that differ extremely in sample size, study
analysts may tend to ignore the small study and simply
analyze the large study if the standard analysis approach
can only be applied as complete case analysis. One aim of
this application is to investigate the gainsmade by the pos-
sibility to analyze both, a large study (study A) and a small
study (study B), with covariance-based boosting in com-
parison to analyzing only the large study (study A) with
standard boosting. We further compare these analyses to
the analysis in the scenario where both studies comprise
the data for the superset of SNPs (“perfect world” scenario,
see Fig. 1b), being referred to as full analysis hereafter,
since the idea of our method is to recover the analysis
of this full dataset. Therefore, we treat the SNPs identi-
fied by the full analysis as “truth”, regardless of their true
biological meaning.
In order to illustrate the impact of these different set-

tings on analysis results, we took the data from chromo-
some 9 of a DLBCL study in the InterLymph Consortium
comprising 8,327 individuals and 15,961 SNPs according
to genotyping platform 1 (GP1). We artificially separated
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Fig. 1 Scenarios appearing in the analysis of consortial data based on two studies after imputation. a. Illustration of SNP data for all individuals in a
study. Every row contains all SNP data for one individual and each column represents the data for one SNP and all individuals. b. A perfect world:
Both studies cover the same SNPs for all individuals (full). c. Reality: Differential coverage of SNPs in both studies. All SNPs in study B are a real subset
of the SNPs in study A. An ideal analysis can use all applicable information (indicated by red for reduced). d. Reality: Differential coverage of SNPs in
both studies as in Fig. 1c. In a complete case analysis, all information from study B is dropped (indicated by part for partial)

this data into a large study (study A) comprising about 8/9
of the data (7,402 individuals) and a small study (study
B) covering the other 1/9 of the data (925 individuals).
In order to constitute differential SNP coverage, we fur-
ther eliminated SNP information such that the small study
(study B) data resembles SNP data from genotyping plat-
form 2 (GP2), which is used in a small study of the
InterLymph Consortium. For chromosome 9, GP2 covers
13,349 SNPs out of the 15,961 SNPs on GP1 (83.64 per
cent).
For the partial analysis, we applied covariance-based

boosting to the large study (study A) alone, that is 7,402
individuals with 15,961 SNPs, see Fig. 1d. In the reduced
analysis we applied boosting to the large study as well
as to the small study (study B), that is 7,402 individu-
als with 15,961 SNPs and 925 individuals with 13,349
SNPs, respectively. See Fig. 1c for an illustration. For the
full analysis, we applied covariance-based boosting to the
original data that is 8,327 individuals with 15,961 SNPs,
see Fig. 1b. It is important to note that in the full analy-
sis and in the partial analysis, covariance-based boosting
does the same as standard componentwise likelihood-
based boosting [21], because both scenarios contain com-
plete case data.
Results for all three scenarios are shown in Table 1,

where we took the 10 SNPs with the largest IFs according
to the “truth” from the full data analysis, and also report
their IFs from the reduced and partial data analysis, where
we applied boosting with 200 steps on 100 subsamples,
and ν = 0.05 as shrinkage parameter. We further display
the p-values from univariate analyses in the full data.

First of all, we see that the suggested procedure does
work if we have partial overlap of SNP data between two
studies: According to the results, 5 out of the 10 SNPs with
the largest IFs in the full analysis are only present in the
large study (study A). Accordingly, the other 5 SNPs are
present in both studies.
Probably due to the correlation structures between the

different SNPs, we find differences in IFs for the distinct

Table 1 Top 10 SNPs according to IFs for the full data analysis
resembling the “truth” (IFfull) in decreasing order

SNP IFfull IFred IFpart p-value

rs7039441 ✓ 0.68 0.65 0.55 0.05

rs1323398 ✓ 0.55 0.63 0.49 0.02

rs3793482 ✘ 0.44 0.39 0.36 0.02

rs1048251 ✓ 0.38 0.27 0.40 0.09

rs10965030 ✘ 0.28 0.18 0.18 0.07

rs10491695 ✘ 0.25 0.50 0.50 0.26

rs3750417 ✘ 0.22 0.10 0.09 0.06

rs7846927 ✓ 0.21 0.12 0.19 0.05

rs6477107 ✓ 0.19 0.21 0.24 0.02

rs12684584 ✘ 0.19 0.21 0.18 0.34

✓ SNP present in both studies
✘ SNP present in the large study (study A) but not in the
✘ small study (study B)
We additionally report the respective IFs from the reduced (IFred) and partial analysis
(IFpart). Numbers are marked in bold if the IF of the (reduced or partial) analysis is
smaller than that of the full analysis (IF < IFfull ) and in italics if it is greater
(IF > IFfull). In 13 cases, we have IF < IFfull , in 7 we have IF > IFfull . We further
report p-values from univariate logistic regression for each SNP
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SNPs over all three settings. However, we see that for most
SNPs the results for the reduced analysis are closer or
equally close to the results of the full analysis compared to
those of the partial analysis.
In order to investigate the significance of our top hits, we

additionally considered type 1 error control according to
the stability selection framework. In our example, only the
two top hits, rs7039441 and rs1323398, meet the require-
ment of IF > 0.5 and thus are in principle candidates for
stability selection. SNP rs7039441 has an IF of 0.68 in the
full analysis and an IF of 0.65 in the reduced analysis. The
total number of SNPs is p = 15, 961, an average num-
ber of selected SNPs in step 200 and all 100 subsamples
q = 16.93 in the full analysis, and q = 16.69 in the reduced
analysis. For illustration purposes we set the threshold for
IFs πthr = 0.65 and obtain

E(V ) ≤ 1
2πthr − 1

· q2

psuper

= 1
2 · 0.65 − 1

· 16.932

15, 961
= 0.0599

(8)

in the full analysis and E(V ) ≤ 0.0582 in the reduced
analysis, indicating that the expected number of false pos-
itives E(V ) is not smaller than 0.05 in both cases (if the
cutoff of 0.65 had been specified beforehand). However, it
is close to 0.05 and thus indicates a potential for increased
power compared to univariate testing, which does not
account for multiple testing. SNP rs1323398 also does not
meet the criterion for significance. Setting the threshold
to 0.68 results in E(V ) = 0.0499 for SNP rs7039441 in the
full analysis.
To be able to contrast synthesis regression with the

lasso, we applied both methods to a data set without any
missings, as the lasso cannot deal with missing data – in
contrast to synthesis regression. For the sake of simplicity,
we used study A, the original dataset comprising all 8,349
individuals and 15,961 SNPs, and conducted mode impu-
tation to replace all missing values (where about 25 per
cent of the SNPs had a proportion of missing values of 50
per cent and more).
When applying synthesis regression to a dataset with-

out any missings, our approach behaves just like standard
componentwise boosting, as synthesis regression is sim-
ply a reformulation of the latter. In our application, a total
of 831 SNPs were selected by boosting. We chose λ, the
penalty coefficient in lasso, such that a total of 831 SNPs
was also selected by the lasso. In total, 47 SNPs were
selected by both analyses.We show those 6 SNPs that have
been amongst the top 100 after application of both, the
lasso and boosting, in Table 2. This is further contrasted

Table 2 Overlap of top 100 selected SNPs by the lasso and
synthesis regression

SNP ranklasso rankBoosting IFfull

rs894243 12 5 0.14

rs80159021 21 1 0.00

rs7041984 25 9 0.00

rs7039441 32 40 0.68

rs7020755 60 4 0.00

rs6475560 71 30 0.00

The SNPs have been ordered in an increasing way according to their position in the
selection sequence when applying the lasso with different values for λ (ranklasso).
rankBoosting details the SNP’s ranks according to the inclusion frequencies returned
by the application of boosting. IFfull shows the inclusion frequencies when applying
synthesis regression to the original study A data including missings

with the inclusion frequency of these SNPs when apply-
ing synthesis regression to the original data from study A
including missings, see IFfull in Table 1.
As indicated by the results, the lasso and boosting

behave differently when being applied to the same data
set without any missings. However, they still detect a con-
siderable proportion of concordant SNPs compared to the
large number of 15,961 SNPs that might potentially have
been selected. The results gained by the application of
synthesis regression to the original study A data shows
again the top hit from the full analysis reported in Table 1.
One further SNP is also identified by synthesis regres-
sion, while 4 SNPs receive inclusion frequencies equal to
zero. Note that we used the same parameter setting for
synthesis regression as for the full analysis, resulting in a
selection of 290 SNPs in total.

Application 2 based on data from two studies
In contrast to the application above, we now investigate
how the method performs when applied to two different
real studies at once. We took data from chromosome 9 for
two CLL studies, study A with 8,349 individuals and study
B with 726 individuals. These studies have a partial over-
lap in SNPs since different genotyping platforms (GP1 for
the former and GP2 for the latter) were applied, resulting
in 15,961 SNPs in study A and a subset of them compris-
ing 13,349 SNPs in study B. This setting corresponds to
the scenario depicted in Fig. 1c.
We performed a combined analysis using data from both

studies. As a comparison, we also applied covariance-
based boosting to both studies separately. In all settings,
we applied boosting with 200 steps on 100 subsamples,
and ν = 0.1 as shrinkage parameter. Results for all three
analyses are shown in Table 3, where we report the 10
SNPs with the largest IFs for the combined analysis and
also state IFs for the respective SNPs in studies A and B,
and p-values from univariate analyses in study A. Notably,
covariance-based boosting is required for the combined
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Table 3 Top 10 SNPs according to IFs for the combined data
analysis (IFcomb) in decreasing order

SNP IFcomb IFA IFB p-value

rs2274095 ✘ 0.52 0.51 - 0.42

rs722628 ✓ 0.48 0.22 0.21 0.55

rs7022345 ✓ 0.44 0.40 0.07 0.02

rs1323398 ✓ 0.41 0.37 0.10 0.13

rs2792232 ✓ 0.39 0.32 0.10 0.20

rs1886261 ✘ 0.35 0.29 - 0.20

rs10974947 ✓ 0.34 0.42 0.13 0.06

rs4742308 ✓ 0.34 0.15 0.17 0.31

rs4742247 ✓ 0.30 0.14 0.06 0.90

rs7018851 ✓ 0.29 0.19 0.37 0.63

✓ SNP present in both studies
✘ SNP present in study A but not in study B
We additionally report the respective IFs from the analysis of study A (IFA) and study
B (IFB). Numbers are marked in bold if the IF of the analysis (of study A or study B) is
smaller than that of the combined analysis (IF < IFcomb) and in italics if it is greater
(IF > IFcomb). For most SNPs, we have IF < IFcomb , for only few we have IF > IFcomb .
We further report p-values from univariate logistic regression for each SNP

analysis, while the analyses of both studies separately
could also be performed with standard boosting.
Similar as in Application 1, our proposed method suc-

ceeds in still detecting some SNPs that are only present
in one study, study A, when performing the combined
analysis. For these SNPs (rs2274095 and rs1886261) the
missing information in study B does not lead to a substan-
tial reduction of IF in the combined analysis compared to
those in the analysis of study A alone. For less frequently
selected SNPs of the combined analysis, we also found
constellations where in study A alone the IF is equal to
or higher than the IF in the combined analysis when con-
sidering SNPs that are not present in study B (results not
shown).
There are quite many situations where the IF in the

combined analysis exceeds those in both separate analyses
(rs722628, rs7022345, rs1323398, rs2792232, rs4742308
and rs4742247). This might result from a gain in informa-
tion across both studies involved and related correlation
structures. For rs7018851 we see that the IF in the com-
bined analysis is lower than in the analysis of study B
alone. This is probably due to the differences in sample
sizes between both studies, where the information from
study A overlays that from study B. With rs10974947 we
detect a SNP that is rarely selected in study B, but is
selected very often in study A alone. This results in a lower
IF in the combined analysis compared to the analysis of
study A.
In the combined analysis and the analysis of study A

alone, SNP rs2274095 reaches an IF > 0.5. In the anal-
ysis of study B, two SNPs, rs6477134 and rs10815532,
reach an IF > 0.5. For all four inclusion frequencies

we get E(V ) > 0.05, indicating that these SNPs are
not significant according to stability selection [16]. In the
univariate analysis of study B we find an association of
rs10815532 with case-control status which does not sur-
vive Bonferroni correction. In the univariate analysis of
SNP rs2274095 in study A and rs6477134 in study B, even
the unadjusted p-values are > 0.05.
No other SNP reaches an IF > 0.5 in any of the analy-

ses, so we could not apply stability selection to them. Also,
none of the univariate p-values remains significant after
Bonferroni correction for multiple testing in the analysis
of study A or study B.
To preclude that the sample size is the main driver for

the selection of SNPs, we ran another analysis based on
studies A and B, taking a random subset of 363 samples
from the large study A, being half the sample size of the
small study B (n = 726). SNPs only present in study A and
having a high IF in the analysis using the complete study
A data still had high IFs when only using the randomly
selected small subset of individuals from study A.
Figure 2 illustrates how IFs decrease or increase when

information from both studies are combined in compari-
son to IFs in the single studies for all SNPs having an IF
≥ 0.25 in any of the three analyses. The blue vertical lines
indicate that IFs in the combined analysis are larger than
IFs in the analysis of study B alone, while a reduction in
IFs is indicated by a red vertical line. Therefore, a blue
vertical line crossing the diagonal indicates that the IF in
the combined analysis is higher than the IF in the analysis
of study A, while a red vertical line crossing the diagonal
indicates that the IF in the analysis of study A is higher
than the IF in the combined analysis. For some SNPs, there
is a notable decrease in IFs for the combined analysis com-
pared to the analysis of study B alone. This decrease seems
to occur mostly for those SNPs that have a rather small IF
in study A. On the other hand, there is an increase in IFs
for SNPs having a rather low IF in study B but a quite high
IF in study A. For some SNPs with a higher IF in study A,
the IFs are zero in both, the analysis of study B only and
of both studies. In these cases, the missing signal in the
smaller study B seems to superpose the signal from the
larger study A.

Computation time
For both applications we ran the code in parallel on 22
cores of 2x Xeon E5-2690v4, a 64 bit server providing 2.6
GHz and 512 GB memory.
In Application 1, each of the three analyses was con-

ducted in 278.62 seconds on average. Runtime was 301.24
seconds for the full analysis, 274.74 seconds for the
reduced analysis and 259.89 seconds for the partial analy-
sis.
For Application 2, runtime was 206.93 seconds on aver-

age while it took 287.31 seconds for the analysis of study
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Fig. 2 This illustration shows how combining information from both studies A and B changes the inclusion frequency (IF) in comparison to IFs in
both single studies

A, only 26.46 seconds for study B and 307.01 seconds for
the combined analysis.
These results indicate that computation time roughly

increases linearly with the number of individuals (when
assuming similar numbers of SNPs) for the distinct
analyses.

Discussion
Regularized regression techniques with automated vari-
able selection entail the promise of (i) potentially increas-
ing power by taking correlation into account and of
(ii) directly developing genetic risk scores from original
individual level SNP data in consortia of several stud-
ies. Unfortunately, in practice this is hindered by only
partial overlap of SNPs between studies, as exemplarily
illustrated in an application based on an NHL dataset.
While there has been a recent surge inmethods that per-

form integrative analysis of several datasets, none of these
approaches addresses the problem present in our applica-
tion. Such integrative approaches allow, for example, for
the integration of multiple molecular sources into a clini-
cal risk prediction signature [18] or the use of integrative
regression networks for genomic association studies [24].
Yet, as stated, these methods do not allow for combin-
ing data with partial overlap. The closest candidate is a
specific synthesis regression approach [19], which is only
applicable in low-dimensional settings. In contrast, the
current proposal is a synthesis regression approach that
can deal with partial overlap in high-dimensional data. An
additional asset is that it can also cope with missing data,
i.e. all available information can be taken into account.
This shows the great potential of the presented method
as there is no “gold standard” for variable selection in

high-dimensional data with missings so far. Being forced
to use a complete case analysis in high-dimensional data
with missings quickly becomes problematic: very few
or even no observations might be left after removal of
those individuals with at least one missing information.
Besides the theoretical considerations, our applications
could also show that SNPs not being present in all studies
are selected by synthesis regression in practice.
The ability of synthesis regression to deal with missing

data was accomplished by adapting a specific regularized
regression approach, i.e. componentwise boosting. Specif-
ically, the estimation in this approach could be expressed
in terms of pairwise SNP covariances, which can be com-
puted based on those studies for which a respective pair of
SNPs is available. This method provides equivalent solu-
tions in situations with complete SNP overlap and comes
at no additional computational cost. For data without
missings, the lasso is an alternative way to perform vari-
able selection. We contrasted synthesis regression with
the lasso in one application with complete data. However,
since an extensive methods comparison between compo-
nentwise boosting and the lasso is not within the scope of
this manuscript, we refer to [20, 25] in this regard.
Applied to genetic data on NHL case-control studies,

the adapted boosting technique was combined with a
resampling approach to stably identify SNPs for a genetic
risk prediction signature. The corresponding resampling
inclusion frequencies for each SNP indicated that con-
siderable gains in stability can be obtained compared to
just restricting the analysis to complete data. This can be
explained by the additional data and related correlation
structures across all involved studies. In some situations
with extremely varying sample sizes, information from the
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large studies may overlay information from the small stud-
ies. But, depending on the correlation structures, even
information from the small studies might contribute to
a higher inclusion frequency in the combined analysis as
shown in Application 2.

Conclusions
In summary, our proposal removes a grave obstacle for
using regularized regression techniques in large consortia,
and thus opens the way for taking the correlation structure
of SNPs into account right from the selection stage. There-
fore, this innovative method potentially contributes to the
development of improved genetic risk scores and should
also be considered for other applications where molecular
data from several studies are to be combined.
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