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Abstract

predict the risk of thyroid cancer.

high-risk samples was 77.5 and 86.0%, respectively.

evaluating the risk of thyroid cancer.

Background: This study aimed to establish an artificial neural network (ANN) model based on variant pathways to

Methods: The RNASeq data of 482 thyroid cancer samples were downloaded from the TCGA database. The
samples were divided into low-risk and high-risk groups, followed by identification of differentially expressed genes
(DEGs). Co-expression analysis and pathway enrichment analysis were then performed. The variant pathways were
screened according to the functional deviation score of each pathway, and an ANN model was established. Finally,
the efficiency of the ANN model for risk assessment was validated by survival analysis and analysis of an
independent microarray dataset (GSE34289) for thyroid cancer.

Results: In total, 190 DEGs (85 up-regulated and 105 down-regulated) were identified between the low-risk and
high-risk groups. Ten risk-related variant pathways were identified between the low-risk and high-risk groups, which
were related to inflammatory and immune responses. Based on these variant pathways, an ANN model was built,
consisting of an input layer, two hidden layers, and an output layer, corresponding to 15, 8, 5, and 1 neuron,
respectively. Survival analysis showed that this model could effectively distinguish the samples with different risks.
Analysis of microarray dataset GSE34289 showed that the accuracy of this model for predicating low-risk and

Conclusions: This study suggests that the ANN model based on variant pathways can be used for effectively
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Background

Thyroid cancer is the most prevalent endocrine malig-
nant cancer, with a steadily increasing incidence rate
over the past several years [1]. Differentiated thyroid
cancer comprises the majority (>90%) of all thyroid
cancers, including papillary and follicular cancer [2, 3].
The main treatments for thyroid cancer are surgery,
TSH suppressive treatment, and radioactive iodine (RAI)
ablation therapy, and the average overall 5-year survival
rate is up to 97.7% [4]. However, approximately 10-20%
patients lose their life due to the recurrence or

* Correspondence: lilizhong1819@163.com

“Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The
Second Hospital of Jilin University, Changchun, Jilin 130041, People’s
Republic of China

Full list of author information is available at the end of the article

K BMC

progression of thyroid cancer [5]. Therefore, exploring
effective approaches is of great importance for the diag-
nosis of the risk of thyroid cancer.

During the past several decades, multiple computer-
aided diagnostic models have been used for predicting
the risk of a variety of cancers, such as logistic regres-
sion, Cox proportional hazard model, and decision trees
[6-8]. Artificial neural networks (ANNSs) represent a
more recent approach for risk assessment of multiple
diseases, including Parkinson’s disease [9], cardiovascular
autonomic dysfunction [10], metabolic disorders [11],
and various cancers [12-14]. Notably, ANN-based
exploration of gene-nutrient interactions in folate and
xenobiotic metabolic pathways can be used for investi-
gating how micronutrients regulate susceptibility to
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breast cancer [15]. In thyroid cancer, Notch signaling is
found to regulate tumor growth [16]. PI3K/Akt signaling
pathway is considered a key mechanism to regulate the
tumor-suppressive effects of metallothionein 1G in thy-
roid cancer [17]. The sonic hedgehog signaling pathway
can induce snail expression and thereby control the self-
renewal of stem cells in anaplastic thyroid cancer [18].
Although many signaling pathways have been found to
be involved in thyroid cancer, studies on the use of
ANN-based pathways for predicting thyroid cancer risk
are rare.

In this study, we downloaded the RNASeq data for
thyroid cancer samples with different cancer risks from
The Cancer Genome Atlas (TCGA) database. Differen-
tially expressed genes (DEGs) were identified between
low-risk and high-risk groups, followed by co-expression
analysis and pathway enrichment analysis. The variant
pathways between the low-risk and high-risk groups
were screened according to functional deviation score of
each enriched pathway and an ANN model was estab-
lished. Moreover, combined with the survival data for
these samples, the efficiency of ANN model for risk
assessment was validated by survival analysis and an
independent microarray dataset of thyroid cancer,
GSE34289. Microarray dataset GSE34289 has been uti-
lized to build a gene-expression classifier for improving
preoperative risk assessment [19]. Our study results
should provide new insights for predicting the risk of
thyroid cancer.

Methods

Data source

The RNASeq data of thyroid cancer, including 482
thyroid cancer samples, were downloaded from TCGA
(https://portal.gdc.cancer.gov/) in April 2017, based on
the thca_tcga_pub_rna_seq_v2_mrna platform. The
clinical information of thyroid cancer samples down-
loaded from the TCGA database was shown in
Additional file 1: Table S1. The downloaded data had
been preprocessed.

Data reconstruction and grouping

Based on the clinical data and information, the thyroid
cancer samples downloaded from TCGA database were
divided into low-risk (including TO, T1, NO, and MO)
and high-risk (including T2, N1, M1, and above stages)
groups according to the International Union Against
Cancer (UICC) tumor—node—metastasis (TNM) classifi-
cation. Finally, 114 high-risk samples and 368 low-risk
samples were distinguished.

Data normalization and identification of DEGs
To eliminate the inherent expression differences be-
tween genes, the low-risk group was used as control
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to normalize the expression value of all samples
using Z-score transformation [20]. The expression
values with more than 2.5-fold change in terms of
the standard deviation were defined as abnormal and
subjected to correction. The DEGs between high-risk
samples and low-risk samples were then identified
using the limma package (version 3.10.3, http://www.
bioconductor.org/packages/2.9/bioc/html/limma.html)
[21]. P<0.05 and coefficient of variance (CV)>33.8
or < —35.1 were used as the cut-off values to identify
the DEGs.

Coexpression network analysis

The coexpression analysis of different genes between
low-risk and high-risk samples was evaluated using
Pearson correlation coefficient. R>0.5 was identified
as positive correlation, whereas R< - 0.5 indicated
negative correlation. In both low-risk and high-risk
samples, the coexpressed genes were defined as stable
pairs, whereas the coexpressed genes found only in
one of the groups were considered specific pairs. The
stable pairs were recognized as the key genes with
important functions, whose coexpression was not
markedly affected by environment or disease stimula-
tion. Nevertheless, the coexpression of specific pairs
would change during tumor initiation and progres-
sion, which could be used for evaluating the cancer
risk. After identifying the stable and specific pairs,
unsupervised hierarchical clustering analysis [22] for
the genes in these pairs was performed using the
heatmap?2 package in R [23], for distinguishing the
samples with different cancer risks. In addition, based
on the coexpression relationships, the respective gene
coexpression networks under the low-risk and high-
risk status were constructed using Cytoscape 3.4.0
[24]. Two topological properties, including average
shortest path (ASLP) and degree distribution, were
then analyzed to measure the connectivity of the
network.

Pathway enrichment analysis and pathway deviation
score

To further analyze the biological functions of the genes
in stable pairs and specific pairs, KEGG pathway enrich-
ment analysis was carried out using Fisher’s exact test in
the Database for annotation, visualization, and integrated
discovery (DAVID) online tool [13]. A value of P<0.05
was used as the cut-off value. As these DEGs were
associated with the risk of cancer, these significantly
enriched pathways might be used for the evaluation of
gene functions related to cancer risk. Based on the
expression of DEGs in each sample, the functional
deviation score for significantly enriched pathways was
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calculated using the Euclidean distance algorithm ac-

cording to the following formula:

S*  (Gi-mean)?

n

score(P) =

In the formula, n represents the number of enriched
genes, Gi represents the expression of a single gene, and
mean is the mean value of Gi in the low-risk group.
High scores indicate a marked pathway deviation from
normal levels of the low-risk group, whereas low scores
indicate that the pathway expression levels were close
to the normal levels of the low-risk group. Using this
method, the differing pathways between the low-risk
and high-risk groups were screened out using
Student’s t-test. P <0.01 was used as the cut-off value
for significance.
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Establishment of ANN model based on the variant
pathways

Based on the DEGs and functional pathway analysis, an
ANN model was established using the supervised classi-
fication method, with multilayer perceptron (MLP)
algorithm [25]. Meanwhile, the ROC curve was drawn
with five-time cross validation to evaluate the classifica-
tion efficiency of ANN model. Meanwhile, logistic
regression as a reference was also analyzed to evaluate
the efficiency of ANN model, based on variant pathways
for risk assessment of thyroid cancer.

Validation with survival analysis

Using the above ANN model, 482 thyroid cancer
samples obtained from the TCGA database was classified
into two groups with different cancer risks. Using the
survival data for these samples, survival analysis for the
low-risk and high-risk groups was conducted using the
survival package in R, and significant differences in

Correlation Matrix

— T

Viy¥904
914904
V20310
08ad
yad1n
4700€Add
2don
CHOAVH
9800
elidl
WIVO
VYAQ'VIH
TIMNM
ZIXod
2dgvdd
LNV
OdsvY
544020

indicate stronger correlation scores
A\
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survival times between two groups were determined
using log-rank test. To further validate the efficiency of
the ANN model for risk assessment, an independent
dataset, with accession number GSE34289 deposited by
Alexander et al. [19], was downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbinlm.nih.
gov/geo/query/acc.cgi), generated on the GPL14961 plat-
form ([HuEx-1_0-st] Affymetrix Human Exon 1.0 ST
Array [transcript (gene) version]). A total of 318 thyroid
cancer samples were used in this study, including 40 be-
nign, 233 indeterminate, and 45 malignant samples. The
clinical information of thyroid cancer samples down-
loaded from the GEO database was shown in Add-
itional file 2: Table S2. The downloaded data had been
preprocessed. The risk for these 318 thyroid cancer sam-
ples was then predicted using this ANN model.

Results

Identification of DEGs in thyroid cancer

Based on the criteria of P <0.05 and CV >33.8 or CV <
-35.1, a total of 190 DEGs were screened out between
low-risk and high risk groups, including 85 up- and 105
down-regulated genes.
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Co-expression network analysis

Pearson correlation coefficient was used to evaluate the
correlation between a given pair of DEGs. Figure 1
displays the heat map of the top 30 risk-related DEGs
with the highest correlation. According to the coexpres-
sion relationships between the gene pairs, the respective
gene coexpression networks for the DEGs between low-
risk and high-risk groups were constructed (Fig. 2a and
b). From the topological perspective of coexpression
networks, we found that these risk-related DEGs had a
high degree of aggregation and central. Compared with
the low-risk group, the high-risk group had more low-
degree nodes (Fig. 2c), suggesting that, with increasing
risk of thyroid cancer, the network node degree distribu-
tion gradually decreased and the association between the
genes was gradually lost. Meanwhile, compared with the
low-risk group, the average shortest path length in the
high-risk group was higher, indicating a decreased
capacity of information transfer through the network
with increasing risk of thyroid cancer (Fig. 2d). In
addition, supervised hierarchical clustering analysis was
performed for these coexpressed DEGs, and the results
showed that the samples with different cancer risk could
be successfully distinguished (Fig. 3).
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Fig. 2 Co-expression networks for low-risk group (a) and high-risk group (b), and their topological properties, including degree distribution
(c) and the average shortest path length (d). Red nodes indicate up-regulated genes, whereas green nodes indicate down-regulated genes
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Variant pathway analysis and establishment of ANN
model for risk assessment

KEGG pathway enrichment analysis for risk-related
DEGs revealed 21 significantly enriched pathways,
including those for Graft-versus-host disease, Allograft
rejection, Type I diabetes mellitus, Autoimmune thyroid
disease, Viral myocarditis, and Herpes simplex infection
(Table 1). In order to quantify these significantly
enriched pathways, the functional deviation score for
each pathway was calculated for the identification of
variant pathways associated with cancer risk. Using
Student’s t-test with a significance threshold of P < 0.01,
10 risk-related variant pathways with significant differ-
ences between low-risk and high-risk groups were iden-
tified, including those for Measles, Antigen processing
and presentation, Rheumatoid arthritis, Phagosome, Sys-
temic lupus erythematosus, Herpes simplex infection,
Inflammatory bowel disease IBD, Tuberculosis, Type I
diabetes mellitus, and Toxoplasmosis (Table 2), most of
which were related to inflammatory and immune
responses. An ANN model for risk assessment was then
constructed, for which the above 10 risk-related
pathways served as the input variables (Fig. 4). This
ANN model consisted of an input layer, two hidden
layers, and an output layer, respectively, correspond-
ing to 15, 8, 5, and 1 neuron, respectively. To assess
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the performance of this ANN model, ROC curves for
this model and logistic regression model (control)
were prepared (Fig. 5). We found that the area under
the receiver operating curve (AUC) for the ANN
model and logistic regression model was 0.85 and
0.73, respectively, indicating that the ANN model
based on variant pathways had a better prediction
accuracy for risk assessment.

Survival analysis validation

The 482 thyroid cancer samples were classified into low-
risk and high-risk groups using ANN model. The results
of survival analysis showed that the survival time of
thyroid cancer samples in the low-risk group was signifi-
cantly greater than that of the high-risk group samples
(P=0.0166, Fig. 6), indicating that this model could
effectively distinguish the samples with different risks
and yielded accurate predictions for the risk of thyroid
cancer. Furthermore, the efficiency of this model was
validated using the microarray dataset GSE34289,
containing 318 samples representing different stages of
thyroid cancer (benign, indeterminate, and malignant).
The results showed that the accuracy of this model
for low-risk (benign) samples and high-risk (indeter-
minate and malignant) samples was 77.5 and 86.0%,
respectively.
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Fig. 3 Supervised hierarchical clustering analysis for coexpressed DEGs. The labels on the abscissa below the plot represent samples, and the
markings above the plot represent the clustering of samples. The markings on the longitudinal axis represent the clustering of coexpressed DEGs
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Table 1 KEGG pathway enrichment analysis for differentially expressed genes

Term Enrichment score Count Pvalue  Genes

Graft-versus-host disease 23.93073593 8 2.52E-08 CD86, CD8O, HLA-DRBS5, FAS, HLA-E, HLA-DMA, HLA-DQAT1,
HLA-DRA

Allograft rejection 2134362934 8 5.89E-08 (D86, CD8O, HLA-DRBS5, FAS, HLA-E, HLA-DMA, HLA-DQAT1,
HLA-DRA

Type | diabetes mellitus 18.80272109 8 148E-07 (D86, CD80, HLA-DRBS5, FAS, HLA-E, HLA-DMA, HLA-DQAT,
HLA-DRA

Autoimmune thyroid disease 15.18681319 8 6.80E-07 (D86, CD8O, HLA-DRBS, FAS, HLA-E, HLA-DMA, HLA-DQAT1,
HLA-DRA

Viral myocarditis 13.85463659 8 1.29E-06 (D86, CD8O, CASP8, HLA-DRBS5, HLA-E, HLA-DMA, HLA-DQAT,
HLA-DRA

Herpes simplex infection 6473067916 12 1.59E-06 DDX58, HMGNT, IFIH1, GTF2IRD1, CASP8, HLA-DRBS5, JAK2,
FAS, HLA-E, HLA-DMA, HLA-DQA1, HLA-DRA

Tuberculosis 5.577078289 10 5.85E-05 FCGR1A, CASP8, HLA-DRB5, FCER1G, ATP6VTH, JAK2, CLECTA,
HLA-DMA, HLA-DQAT1, HLA-DRA

Cell adhesion molecules (CAMs) 6.256539235 9 7.58E-05 CLDN16, CD86, CD80, HLA-DRB5, L1CAM, HLA-E, HLA-DMA,
HLA-DQAT, HLA-DRA

Intestinal immune network for IgA production 1260182371 6 9.50E-05 CD86, CD8O, HLA-DRB5, HLA-DMA, HLA-DQAT1, HLA-DRA

Phagosome 5.806722689 9 1.28E-04 FCGR1A, HLA-DRBS5, ITGB5, ATP6V1H, CLEC7A, HLA-E, HLA-DMA,
HLA-DQAT, HLA-DRA

Asthma 16.45238095 5 2.05E-04 HLA-DRB5, FCER1G, HLA-DMA, HLA-DQAT1, HLA-DRA

Rheumatoid arthritis 7.852272727 7 2.26E-04 CD86, CD80, HLA-DRB5, ATP6V1H, HLA-DMA, HLA-DQAT,
HLA-DRA

Influenza A 5.10591133 9 3.11E-04 DDX58, IFIH1, HLA-DRBS5, JAK2, CPSF4, FAS, HLA-DMA,
HLA-DQA1, HLA-DRA

Systemic lupus erythematosus 5.893390192 8 3.50E-04 HISTTH2AC, CD86, CD80, FCGRTA, HLA-DRB5, HLA-DMA,
HLA-DQA1, HLA-DRA

Leishmaniasis 8342052314 6 6.70E-04 FCGR1A, HLA-DRB5, JAK2, HLA-DMA, HLA-DQA1, HLA-DRA

Antigen processing and presentation 7793233083 6 9.15E-04  KLRC4, HLA-DRB5, HLA-E, HLA-DMA, HLA-DQAT1, HLA-DRA

Toxoplasmosis 5.855932203 7 0.001089 CASP8, HLA-DRBS5, JAK2, BIRC3, HLA-DMA, HLA-DQAT1, HLA-DRA

Staphylococcus aureus infection 9.14021164 5 0.001978 FCGR1A, HLA-DRBS, HLA-DMA, HLA-DQA1, HLA-DRA

Inflammatory bowel disease (IBD) 7.712053571 5 0.003688 IL18RAP, HLA-DRB5, HLA-DMA, HLA-DQAT, HLA-DRA

HTLV-l infection 269921875 7 0.04181  IL2RB, HLA-DRBS5, HLA-E, HLA-DMA, HLA-DQAT, HLA-DRA, APC

Measles 3.711063373 5 0.043409 DDX58, IL2RB, IFIH1, JAK2, FAS

Discussion tumors are attributed to infection-driven inflamma-

In this study, we developed an ANN model for thyroid
cancer, using 10 significantly enriched pathways related
to inflammatory and immune responses. Analysis using
the survival data of these samples showed that this
model could effectively distinguish the samples with
different risks. Analysis of microarray dataset GSE34289
showed that the accuracy of this model for predicting
low-risk and high-risk samples was 77.5 and 86.0%, re-
spectively. These findings highlight the efficiency of
ANN in predicting the risk of thyroid cancer and merit
further discussion.

One of the important findings of this study was that
10 variant pathways were identified to establish an ANN
model, all of which were related to inflammatory and
immune responses. Approximately 15-20% of human

tions, and two interrelated pathways have been re-
ported as the link inflammation and cancer [26]. The
incidence of thyroid cancer is increased in auto-
immune thyroid diseases, and an inflammatory cell
infiltrate is often observed, which contributes to the
development of thyroid cancer [27]. In addition, the
elevated serum concentration of antithyroglobulin
antibody and TSH >1pIU/ml in patients with Hashi-
moto’s thyroiditis (a common autoimmune disease)
have been confirmed as independent predictors for
thyroid cancer [28]. An immunological association
has also been reported between Hashimoto’s thyroid-
itis and thyroid cancer [29], and the pathology of
Hashimoto’s thyroiditis can increase the risk of thy-
roid cancer [30]. The inflammatory microenvironment
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Table 2 Selection of risk-related pathways

Page 7 of 10

Pathway P value_ Genes

Measles 2.03E-29 DDX58, IL2RB, IFIH1, JAK2, FAS

Antigen processing and presentation 742E-19 KLRC4, HLA-DRB5, HLA-E, HLA-DMA, HLA-DQA1, HLA-DRA

Rheumatoid arthritis 1.70E-13 CD86, CD80, HLA-DRBS5, ATP6V1H, HLA-DMA, HLA-DQAT1, HLA-DRA

Phagosome 5.84E-12 FCGR1A, HLA-DRBS, ITGB5, ATP6V1H, CLEC7A, HLA-E, HLA-DMA, HLA-DQA1,
HLA-DRA

Systemic lupus erythematosus 1.31E-11 HISTTH2AC, CD86, CD80, FCGR1A, HLA-DRB5, HLA-DMA, HLA-DQAT1, HLA-DRA

Herpes simplex infection 1.18E-06 DDX58, HMGNT, IFIH1, GTF2IRD1, CASP8, HLA-DRB5, JAK2, FAS, HLA-E, HLA-DMA,
HLA-DQAT, HLA-DRA

Inflammatory bowel disease (IBD) 1.14E-05 ILT8RAP, HLA-DRB5, HLA-DMA, HLA-DQA1, HLA-DRA

Tuberculosis 0.000357276 FCGR1A, CASP8, HLA-DRBS, FCER1G, ATP6V1H, JAK2, CLEC7A, HLA-DMA,
HLA-DQAT, HLA-DRA

Type | diabetes mellitus 0.001284502 CD86, CD80, HLA-DRBS, FAS, HLA-E, HLA-DMA, HLA-DQAT1, HLA-DRA

Toxoplasmosis 0.001643 CASP8, HLA-DRBS5, JAK2, BIRC3, HLA-DMA, HLA-DQA1, HLA-DRA

is shown to play a crucial role in thyroid carcinogen-
esis [31]. Considering the key roles of inflammatory
and immune responses in the development of thyroid
cancer, we speculate that these variant pathways may
be associated with the risk of thyroid cancer.
Furthermore, ANN and logistic regression model
are the most accepted type of models in biomedicine
[32-34]. ANN model is considered to be better
suited than logistic-regression-based model for pre-
dicting outcomes [35]. Consistent with this finding,

the ANN model developed here had a higher AUC
than the logistic regression model, highlighting the
better risk assessment accuracy of the ANN model
based on variant pathways. Moreover, the results of
survival analysis showed that the survival time of
thyroid cancer samples in the low-risk group was
greater than that of the high-risk group samples, in-
dicating that this model could effectively distinguish
the samples with different risk and was accurate for
predicting the risk of thyroid cancer. Furthermore,
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ROC curve of MLP and LR model
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based on the analysis of microarray dataset
GSE34289, the accuracy of this model for low-risk
(benign) samples and high-risk (indeterminate and
malignant) samples was computed as 77.5 and 86.0%,
respectively. These data further confirm the high

accuracy of ANN model for the prediction of disease
risk, as reported previously [36]. Nevertheless, the
performance of the prediction model still needs to be
verified through comparison with multiple computer-
aided diagnostic models.
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Conclusion

In conclusion, this study suggests that the ANN model
based on variant pathways could be used to evaluate the
risk of thyroid cancer. With this model, we can identify
the patients with a high risk of thyroid cancer, and the
model-predicted risk probability would be helpful for
clinicians in guiding the management and prevention of
cancer high-risk patients.

Additional files

Additional file 1: Table S1. The clinical information of thyroid cancer
samples downloaded from the Cancer Genome Atlas (TCGA) database.
(XLSX 136 kb)

Additional file 2: Table S2. The clinical information of thyroid cancer
samples downloaded from the GEO database. (XLSX 25 kb)
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