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Abstract

somatic mutations in ctDNA.

Background: Prostate cancer is a heterogeneous disease, meaning patients would benefit from different treatment
strategies based on their molecular stratification. In recent years, several genomic studies have identified prostate
cancers with defects in DNA repair genes. It is known that the PARP inhibitor, olaparib, has a significant synthetic
lethal effect on tumors with BRCA 1/2 mutations, particularly in ovarian and breast cancer.

Case presentation: In this study, we describe a patient with metastatic castration-resistant prostate cancer
(mCRPC) containing a BRCA2 germline mutation who underwent olaparib treatment. The efficacy of the treatment
was monitored by serum TPSA level as well as mutation levels of circulating tumor DNA (ctDNA) using next-
generation sequencing (NGS). The patient responded to the olaparib treatment as indicated by the minimal
residual levels of TPSA and tumor-specific mutations of ctDNA in plasma after four months of treatment, although
the patient eventually progressed at six-month post-treatment with significantly elevated and newly acquired

Conclusions: Our study provides evidence that mCRPC with BRCA2 germline mutations could response to PARP
inhibitor, which improves patient’s outcome. We further demonstrated that NGS-based genetic testing on liquid
biopsy can be used to dynamically monitor the efficacy of treatment.

Keywords: Metastatic prostate cancer, BRCA2 germline mutation, PARP inhibitor, Olaparib, Liquid biopsy

Background
Germline BRCA1/2 mutations are the greatest risk factor
for inheritable breast and ovarian cancer [1]. In contrast
to the diverse functions of BRCA1 in multiple DNA re-
pair pathways and in checkpoint regulation, BRCA?2 is
mainly anticipated in DNA double strand breaks (DSBs)
repair through RAD51-dependent homologous recom-
bination (HR) [2]. Deleterious mutations in BRCA2 was
also implicated in a high risk of prostate cancer predis-
position (8.6-fold in men <65 years) and more aggres-
siveness, as well as BRCAI mutations although with a
much lower frequency [3-5].

Poly(ADP-ribose) polymerases (PARPs) are nuclear en-
zymes playing important roles in various cellular pro-
cesses including DNA repair [6]. Tumor cells defective
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in BRCA1/2 may rely on PAPR-dependent DNA repair,
and therefore are sensitive to PARP inhibitors, which
may also increase the sensitivity of tumor cells to
DNA-damaging agents. Olaparib, a PARP inhibitor, has
been approved by the US Food and Drug Administration
(FDA) and European Medicines Agency registration for
treatment of breast and ovarian cancer associated with
BRCA 1/2 defects [7, 8]. Sustained responses to PARP
inhibitors have also been reported in metastatic prostate
cancers with DNA-repair gene mutation [9, 10]. Here
we report a patient with germline BRCA2-mutated
metastatic castration-resistant prostate cancer (mCRPC)
who responded to the PARP inhibitor, olaparib.

Case presentation

The patient was a 67-year-old man who presented with
dysuria. Computed tomography (CT) examination of the
upper abdomen revealed multiple swollen retroperiton-
eal and pelvic lymph nodes and abnormal bone density
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on January 5th 2015. Positron Emission Tomography-CT
(PET-CT) revealed hypermetabolic lesions in the left lobe
of the prostate, and multiple bone sites, as well as enlarged
lymph nodes of the left neck, supraclavicular region, retro-
peritoneal, bilateral iliac blood vessels and pelvic left side
wall, which were diagnosed as malignant metastasis on
February 5th 2015. A prostate biopsy was performed on
February 28th 2015, and histologic assessment showed
conventional adenocarcinoma with Gleason score 4 + 3 =
7, while serum TPSA level was >100 ng/mL. The clinical
course of the patient was summarized in Fig. 1.

The patient started the treatment with bicalutamide
tablets, zoladex and zoledronate on February 28th 2015.
His TPSA level dropped to 13 ng/mL after two months
of treatment, and he continued on the therapy. However,
recurrent disease developed on July 9th 2015, marked by
elevated TPSA up to 60 ng/mL. The patient was then
switched to the treatment with flutamide and zoledro-
nate. On October 10th 2015, due to persistent increase
in TPSA level, the patient was further treated with abira-
terone. On February 5th 2016, emission CT showed pro-
gression with bone metastases, with TPSA level rising to
150 ng/mL. The patient then started six cycles of sys-
temic chemotherapy with docetaxel and metacortandra-
cin, during which time his TPSA level continued to rise.
One month after finishing the systemic chemotherapy,
his TPSA level reached 492.3 ng/mL. The patient then
received enzalutamide, but by August 22nd 2016, the
TPSA level had risen to 644.3 ng/mL.

Considering the poor responses to all currently avail-
able therapies, we performed genetic testing on patient’s
circulating tumor DNA (ctDNA) from blood using
next-generation sequencing (NGS) targeting over 400
cancer-relevant genes. The assay was done using a com-
mercial test. Genomic DNA from the whole blood
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sample was used as germline control. We detected sev-
eral genomic alterations known to be associated with
prostate cancer; specifically, we identified PIK3-
CA-Q546K activated mutation with a mutant allele fre-
quency (MAF) of 17%, a TP53-DISCIFP1 fusion (MAF:
12%), 4.1 folds of relative copy number gain of the AR
gene, as well as germline BRCA2-G1761X mutation. As
a result, the patient started treatment with everolimus, a
mTOR inhibitor, for his high MAF of PIK3CA-Q546K
mutation. Despite this however, serum TPSA continued
to increase slowly 798.9 ng/mL to 1379 ng/mL. On Oc-
tober 27th 2016, CT scan showed progression of mul-
tiple lymph nodes metastases, double pleural effusion
and appearance of new liver metastases (Fig. 2a). The
patient also developed a fever, shortness of breath and
lethargy followed by unconsciousness. The patient was
transferred to the intensive care unit (ICU) and under-
went transfusion, respirator assisted ventilation and
tracheotomy.

Due to prior detection of the BRCA2 G1761X germ-
line mutation and poor physical condition, the patient
started on olaparib treatment, 400 mg twice daily by
nasal feeding tube, on November 1st 2016; the patient
tolerated the dose and his symptoms significantly re-
lieved. On December 26th 2016, CT assessment indi-
cated a partial response (PR) of liver metastases to
olaparib (Fig. 2b). Furthermore, TPSA level was reduced
from 1379 ng/mL to 208 ng/mL. Following resolution of
fever, shortness of breath, lethargy and unconsciousness,
the patient was transferred out of the ICU. On January
22nd 2017, the patient’s blood sample was obtained for
ctDNA testing by NGS, which showed that the tumor spe-
cific mutations identified before the treatment had signifi-
cantly decreased (PIK3CA-Q546K, 0.4%; TP53-DISCIFPI
fusion, 0.1%; undetectable copy number gain of AR). After
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Fig. 1 Clinical course of the patient. Serum TPSA level was measured for disease monitoring. The timeline and duration of different treatments
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two months of olaparib treatment

Fig. 2 Shrinkage of the patient’s intra-hepatic lesions after two months of olaparib treatment. CT scan of the abdomen before (a) and after (b)

four months of the therapy, his TPSA level continued to
fall to 30.65 ng/mL. However, unfortunately, the patient’s
disease progressed again after six-month of the treatment,
and his ctDNA testing showed that all the previous de-
tected tumor specific mutations elevated to an even higher
level compared to pretreatment (PIK3CA-Q546K, 19.9%;
TP53-DISCIFPI fusion, 29.1%; 4.1 folds of relative copy
number gain of AR), as well as a newly emerged RBI sin-
gle copy number loss. In addition, some other somatic
genomic alterations had been found in the third test
(Table 1).

Discussion and conclusions

PARP inhibitors have proven effective in patients with
breast and ovarian cancers harboring BRCAI/2 muta-
tions. Preliminary data also showed activity of these
drugs in patients with germline BRCA1/2-mutated pros-
tate cancer [7]. In this study, we observed a patient with
germline BRCA2 G1761X mutation as well as somatic
PIK3CA Q546K mutation, a TP53-DISCIFP1 fusion and
AR gene copy number gain, who had a favorable re-
sponse to olaparib, although the patient eventually pro-
gressed with the emergence of olaparib resistance after
six months of treatment. During the olaparib-response
period, we found via liquid biopsy that the MAF of
PIK3CA Q546K mutation decreased from 17 to 0.4%,
which then increased back to 19.9% upon patient’s pro-
gression. NGS genetic testing further demonstrated that
the MAF of TP53-DISCIFP1 fusion decreased from 12
to 0.1% in response to olaparib treatment, and then in-
creased to 29.1% when the disease progressed.

Preclinical models have suggested that PIK3CA path-
way activation can alter AR transcriptional activity and
lead to hormonal therapy resistance [11, 12]. A recent
publication suggest that patients has longer PFS with
normal PIK3CA versus those with mutation or activation
[13]. This patient had poor responses to all hormonal
therapies. However, the role of PIK3CA mutations in
olaparib susceptibility are not currently known. We need
futher research.

A recent study suggesting that outcomes to abirater-
one and enzalutamide appear better in mCRPC patients
harboring germline BRCA/ATM mutations (vs no muta-
tions), but not for patients with other non-BRCA/ATM
germline mutations [14]. Another recent study suggest-
ing that men with germline and/or somatic DNA repair
gene alterations may have a better response to firstline
abiraterone treatment (with or without concurrent use
of a PARP inhibitor) than those without mutations. This
study also suggesting that patients has longer PFS with
normal PTEN, TP53, and PIK3CA versus those with mu-
tation or activation.Futher multivariable analysis including
clinical and biomarker variables individually revealed
DRD(DNA-damage repair defect) and TP53 as biomarkers
separately associated with PFS after controlling for clinical
covariates [13]. Although this patient had germline DNA
repair gene alterations (BRCA2), he did not had a good re-
sponse to abiraterone and a PARP inhibitor. So we sup-
pose that the TP53 alterations perhaps dominated the
tumor biology in this case and not the BRCA2 lesion. The
TP53 fusion is probably pathogenic, especially if it dis-
rupts any of the key functional domains of the p53 pro-
tein. Studies on large case series demonstrate that TP53
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mutations are independent markers of bad prognosis
in breast and several other cancers, and that the exact
type and position of the mutation influences disease
outcome [15].

In addition, when the patient’s disease progressed after
the treatment of olaparib, and the ctDNA testing showed
that a newly emerged RBI single copy number loss. RB1
alteration is rare in primary prostate adenocarcinoma
[16], unlike PTEN or TP53 mutation. Previous papers
have suggested that Retinoblastoma (RB1) and tumor
protein 53 (TP53) tumor suppressor gene loss drives
transformation of prostate adenocarcinoma (PADC) to
neuroendocrine prostate cancer variants (NEPC) resist-
ant to antiandrogen therapy (AAT) [17]. This hypothesis
potentially extends beyond prostate cancer since neuroen-
docrine lineage transformation associated with RB1 and
TP53 loss has also been observed in lung adenocarcinoma
relapsing from epidermal growth factor receptor-targeted
therapies [18].That may also one of the mechanisms of
PARP inhibitors resistance. We need further molecular
based investigantionsto identify the hypothesis.

Approximately 20% of metastatic prostate cancers har-
bor mutations in genes required for DNA repair by hom-
ologous recombination (HRR) such as BRCA2. HRR
defects confer synthetic lethality to PARP inhibitors
(PARPi) such as olaparib [19].But tumors sensitive to
PARP inhibitors are known to ultimately develop resist-
ance, so far, multiple mechanisms have been proposed.
First, olaparib can trigger secondary acquired BRCA mu-
tations leading to restoration of the RAD51-dependent
HR pathway and allow for doublestrand breaks to undergo
this less destructive repair pathway [19-22]. Intriguingly,
these reversion mutations can restore the open reading
frame of HR genes (e.g. BRCA2, PALB2), these have been
observed not only in the setting of somatic HR mutations
but also apply to germline mutations. By reverting to
wild-type, such cancer cells become HR-proficient mean-
ing that they are no longer susceptible to synthetic lethal-
ity despite ongoing PARP inhibition [23]. This patient had
a germline BRCA2 p.G1761X(c.G5281 T) mutation, at the
time of progression, a further test was made, but we had
neither found additional somatic BRCA2 mutations nor
nucleotide sequences flanking the BRCA2 original frame-
shift deletions, so in this case, no ORF-restoring BRCA2
mutations (i.e. reversion mutations) were discovered on
the progression ctDNA analysis. Second, Cells lacking
HRR must repair double-strand DNA breaks through
more error-prone forms of DNA repair such as
non-homologous end joining which leads to worsening
mutational burden [19]. The loss of a key regulatory pro-
tein within the non-homologous end junction repair path-
way, 53BP1, promotes the increased utilization of HR [24].
If both of these deficits occur in concert, then partial
ATM-dependent HR repair proceeds in BRCA1- but not
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BRCA2-deficient cells [24, 25]. Of note, this escape mech-
anism has been identified clinically in BRCA1/2-associ-
ated breast cancer but may also mediate a proportion of
prostate cancers that become resistant [25]. Third, upreg-
ulation of P-glycoprotein efflux transporter pumps re-
duces activity of many drugs, including PARP inhibitors,
by depleting their intracellular availability [21, 22].

We found several new somatic mutants (i.e. NKX2-1,
ERBB4, RUNXI, NF1, MET, FGFR4 and TET2) when
the disease progressed, now we did not know the correl-
ation between the somatic mutants and the resistance,
but compared with the second genetic test, more new
mutants had appeared, which indicate that the tumor
cells were in an extremely active state and need timely
treatment. In addition, these aberrations again indicate
possible divergent clonal evolutionary resistance mecha-
nisms as a result of PARP inhibition—generated selective
pressures [20]. Overall, this case demonstrates that the
PARP inhibitor olaparib can be effective in treating pa-
tients with germline BRCA2 mutated prostate cancer
and highlights the potential of NGS-based genetic test-
ing on liquid biopsy as a diagnostic tool to monitor the
presence and dynamics of tumor clones.
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