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Novel missense mutation in the bZIP
transcription factor, MAF, associated
with congenital cataract, developmental
delay, seizures and hearing loss
(Aymé-Gripp syndrome)
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Abstract

Background: Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to
determine the genetic cause of syndromic congenital cataract in an Australian mother and son.

Method: Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom
Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human
genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they
were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein
changing. Variants were assessed for segregation with the phenotype in the affected mother.

Result: A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G,
p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from
public variant databases.

Conclusion: The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss
and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family.

Keywords: MAF, Congenital cataract, Pediatric cataract, Ion Ampliseq, Next generation sequencing, Syndromic
cataract, Aymé-Gripp syndrome

Background
Cataract is an opacity of the crystalline lens resulting in
impaired vision. Cataract formation is typically an age-
related process that affects adults; however, rarely it can
be present at birth or early childhood and is classified as
congenital (or juvenile/paediatric) cataract. Congenital
cataract occurs in 1–6 per 10,000 live births in developed
countries [1]; in Australia the incidence is estimated to be
2.2 per 10,000 births [2].

Around 50% of cases have a genetic cause [3], with other
causes including intrauterine infection, malnutrition and
metabolic disorder. Hereditary congenital cataracts can be
transmitted as autosomal recessive, autosomal dominant
or X-linked traits, with autosomal dominant the most
common mode of inheritance, and can be isolated or
syndromic (associated with additional non-ocular abnor-
malities) [4]. The disorder demonstrates genetic and
phenotypic heterogeneity.
Among the many genes associated with congenital

cataracts is the transcription factor gene MAF (v-maf
avian musculoaponeurotic fibrosarcoma oncogene homo-
log, OMIM 177075, NM_005360.4). The MAF family of
transcription factors is divided into two subgroups, large
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and small. The large subgroup (MAFA, MAFB, c-MAF
or v-MAF, and retina-specific leucine zipper (NRL)) is
characterized by a bZip structure, a motif for DNA bind-
ing and protein dimerization and a transactivation
domain [5]. The small MAF proteins (MAFF, MAFG,
and MAFK) lack the transactivation domain [5, 6].
Here we report a missense variant in v-MAF, usually

referred to as MAF, in a mother and son with syndromic
congenital cataract associated with hearing loss and
developmental delay.

Methods
DNA was extracted from whole blood using the QIAamp
DNA blood maxi kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s protocol. Fifty-one genes
associated with congenital cataract human or mouse were
selected through a review of the literature (Additional
file 1: Table S1) [7–20] for sequencing the coding and
untranslated regions.
A sequencing library was prepared using the proband’s

DNA (patient CSA108.01, Fig. 1a) as template. The
library was generated with the Ion AmpliSeq library kit
version 2.0 (Life Technologies, California, USA) and cus-
tom Ion Ampliseq primers according to the manufac-
turer’s protocols, and was sequenced on an Ion Torrent
Personal Genome Machine using the Ion PGM Sequen-
cing 200 Kit v2 and an Ion 318 chip (Life Technologies).
Alignment to the reference genome (hg19), variant
calling and annotation were conducted in Torrent Suite
(version 3.6.), and Ion reporter (V4.0) with appropriate
plugins. Variants were prioritized for further analysis if
they were predicted to alter protein sequence (non-

synonymous), were absent or very rare (Minor Allele
Frequency < 1%) in public databases including dbSNP137
(https://www.ncbi.nlm.nih.gov/SNP/), Exome Aggrega-
tion Consortium (ExAC) (http://exac.broadinstitute.org/)
and absent from an in-house list of sequencing errors
previously seen on this gene panel. In addition, selected
variants were assessed by SIFT [21] and Polyphen-2 [22]
for their predicted effect on protein function.
The detected novel, coding variant in MAF was

validated by Sanger sequencing using forward primer 5′-
GGGGGTGTGTGTGTGAGC-3′ and reverse primer
5′-CTGGAGCTGGTGGCTGTT-3′. PCR reactions of
20 μl final volume consisting of 1X Coraload PCR buffer
(Qiagen), 0.1 mM dNTPs (Roche Diagnostics, Basel,
Switzerland), 0.5 μM each primer, 0.5U Hot Star Plus
Taq Polymerase (Qiagen) and 40 ng of DNA was prepared.
Final concentrating of Mg2+ was adjusted to 2.5 mM by
adding the required amount of Mgcl2 (Qiagen). Amplifica-
tion conditions involved an initial activation step of 95 °C
for 5 min, followed by 35 cycles of 30 s of denaturation at
95 °C, 30 s of annealing at 57 °C and 30 s of extension at
72 °C. A final extension step was for 5 min at 72 °C. The
PCR products were cleaned by treatment with 10 units (U)
Exonuclease I (New England Biolabs, Genesearch Pty Ltd,
QLD, Australia) and 2 U of Shrimp Alkaline Phosphatase
(SAP) (USB, Millennium Science Pty. Ltd., VIC, Australia)
at 37 °C for 1 h followed by enzyme deactivation at 80 °C
for 20 min.
The cleaned PCR product was sequenced with BigDye

Terminators (Life Technologies) on an ABI3300xl ac-
cording to standard protocols. The variant was screened
in 326 unrelated normal Australian controls using the

Fig. 1 a Pedigree of family CSA108 with variant in MAF. Individuals with ID numbers were examined by an ophthalmologist. Solid circles indicate
affected females and solid squares indicate affected males. The proband is marked by an arrow head. “+” indicates mutant allele and “−” indicates
wild type allele of c.176C > G in the MAF gene. b Sequence chromatogram of two examined individuals at variant c.176C > G. Both sequenced
affected members are heterozygous for this variant. c Protein alignment shows the MAF protein is highly conserved among the indicated species.
The mutated residue is indicated by the box
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MassArray platform (Sequenom, California, USA) and
iPlEX chemistry (Sequenom) at the Australian Genome
Research Facility (QLD, Australia) and assessed for con-
servation across species using The Universal Protein Re-
source (UniProt) database (http://www.uniprot.org/).

Results
DNA from the proband was sequenced for 51 known
congenital cataract genes using an Ion AmpliSeq custom
amplicon panel. A total of 1,023,730 reads were mapped
against the reference genome (hg19), of which 94.18%
were on target. An average read depth of 841.9× was
achieved for a total of 1216 amplicons with 96.05% of
the target bases covered at least 20 fold. A total of 134
variants were annotated (Additional file 2), of which only
six were novel or rare and nonsynonymous. Of the six
variants, only one was not present in an in-house list of
sequencing errors previously seen on this gene panel
and predicted to be pathogenic by both SIFT and
Polyphen-2 (five variants were false positive). This novel
coding variant was a missense variant in the MAF gene
(c.176C > G, p.(Pro59Arg)) (Fig. 1b). It was predicted to
be pathogenic by SIFT and Polyphen-2 and is in a highly
conserved region of the protein (Fig. 1c). The variant
was also present in the affected mother and absent in
326 screened unrelated Caucasian controls. DNA was
not available from the two unaffected siblings.
The 20-year-old proband (CS108.01) was diagnosed at

birth with bilateral congenital cataract, described as
nuclear and posterior polar in the right eye, and milder
posterior polar oil droplet cataract in the left eye
(Fig. 2a). Cataract in the right eye was removed at 5
months of age and the patient subsequently developed
aphakic glaucoma. The right eye ultimately was signifi-
cantly amblyopic. The proband also had mild to moderate
sensorineural hearing loss (he did not appear to have a
hearing impairment in early childhood). He was diagnosed
with Asperger syndrome and borderline intellectual abil-
ities in childhood. He attended a special school because of
the combination of Asperger syndrome and visual/hearing
impairment. In spite of this, he completed secondary
education and went on to university, implying normal
intellectual abilities. His childhood assessments of mild
intellectual disability and borderline abilities are likely to
have reflected the autism spectrum disorder and possibly
the visual impairment. He developed scoliosis during teen-
age and had seizures at 13.5 years (two, 2 weeks apart).
His height was 25th–50th percentile and head circumfer-
ence was 50th–98th percentile. He had a distinctive facial
appearance with narrow posteriorly rotated ears with
upturned ear lobules, downslanting palpebral fissures, flat
mid-face, short philtrum, prominent narrow chin and
dental malocclusion (Fig. 2c). There was no joint limita-
tion. The 53-year-old mother of the proband, CSA108.02,

who had a mild learning disability and hearing impair-
ment, had cataract extraction at the age of 40. She had not
been diagnosed to have an autism spectrum disorder, had
not had seizures and did not have joint limitation. Other
features were normal height (10th–25th percentile), pre-
mature hair loss and double nails, with a nail growing out
over the top of the existing one. She had mildly down
slanting palpebral fissures, flat mid-face, a relatively prom-
inent chin and widely spaced lower teeth (Fig. 2b).

Discussion
Undergoing traditional diagnostic assessment procedures,
the clinical diagnosis of this proband with a rare syn-
dromic congenital cataract phenotype was complicated
and protracted. Past investigations included brain MRI,
EEG, karyotyping, subtelomere FISH, FISH for Smith-
Magenis syndrome, TORCH serology, urine metabolic
screen for amino acids, organic acids and mucopolysac-
charides, galactose-1-phosphate uridyl transferase, 7-
dehydrocholesterol and very long chain fatty acids; all were
normal apart from a diffusely abnormal EEG. Sequencing

Fig. 2 Clinical features of the syndrome in family CSA108.
a Phenotype of syndromic cataract in CSA108.01. Slit-lamp
photographs showing posterior polar oil droplet cataract with
posterior lenticonus. b Dental abnormalities in CSA108.01
(left) and CSA108.02 (right). c Facial features in CSA108.01 (left) and
CSA108.02 (right). In particular, note flat mid-face in both, and short
philtrum, long/narrow chin and upturned ear lobules in CSA108.01
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of the NHS gene associated with Nance-Horan syndrome
(congenital cataract, dental anomalies and developmental
delay) did not detect any pathogenic variants. The imple-
mentation of next generation sequencing including
targeted gene sequencing panels such as PGM (Personal
Genome Machine) results in more convenient molecular
diagnostic process.
Although this study cannot entirely rule out a novel

cause for disease, the features described in the proband
and his mother are consistent with the condition previ-
ously reported independently by Aymé and Phillip [23]
and Gripp et al. [24] (MIM 601088). There also have
been reports of a similar syndrome by Fine and Lubinsky
[25] and Preus et al. [26]. A recent study by Niceta et al.
[27] reported a narrow spectrum of amino-acid substitu-
tions within the MAF protein (Fig. 3), causing cataract,
deafness, intellectual disability, seizures, a distinctive flat
facial appearance, skeletal anomalies and reduced growth.
The authors proposed the eponym Aymé-Gripp for this
multisystem disorder. The reported de novo amino acid
substitutions in MAF associated with this syndrome are
p.(Ser54Leu), p.(Thr58Ala), p.(Thr58Ile), p.(Pro59His),
p.(Pro59Leu), p.(Thr2Arg) and p.(Pro69Arg). Interestingly
all these variants are located within the N-terminal trans-
activation domain of MAF as is the p.(Pro59Arg) substitu-
tion reported here (Fig. 3). Unlike other reported variants
in MAF associated with Aymé-Gripp syndrome [27], the
variant described here was inherited, with transmission
from mother to son. Our findings also show that variants
associated with Aymé-Gripp syndrome can display intra-
familial variability since the mother had a substantially
milder phenotype than the proband.
There also have been multiple other reports of variants in

MAF associated with various forms of congenital cataract
(Fig. 3): p.(Arg294Trp), p.(Lys297Arg), p.(Arg299Ser) and
p.(Lys320Gly) variants have been linked with nuclear
congenital cataract, [28] cerulean congenital cataract and
microcornea [29], lamellar cataract with microcornea and
iris coloboma, [30] and nuclear, punctate, stromal cataract

with microcornea [3], respectively. Jamieson et al. described
a family with juvenile onset progressive cataract of cortical
pulverulent opacities with anterior and posterior sutural
densities, anterior segment dysgenesis and microphthalmia
associated with the cytogenetically balanced chromosome
translocation 46, XY, t(5;16) (p15.3;q23.2), which transected
the genomic-control domain of MAF [31]. They also
reported a variant in the DNA-binding domain of MAF
(p.(Arg288Pro)) in a three generations family with lamellar
cortical and nuclear pulverulent cataract, microcornea, and
iris coloboma. Narumi et al. [32] identified a MAF variant
(p.(Gln303Leu)) through whole exome sequencing in a
family with phenotypically variable congenital cataract
(lamellar or anterior polar with microcornea and iris colo-
boma). The affected proband was diagnosed with lamellar
cataract without any other eye malformation with lan-
guage development delay and autism. The proband was
also screened for variants in the NHS gene, however simi-
lar to the case we are reporting here, no variant in this
gene was detected.
Many transcription factor genes are involved in lens

development and their functions are important for
proper lens induction, and cell proliferation and differ-
entiation [33]. MAF belongs to the bZIP transcription
factor family. It forms both homodimers and heterodi-
mers, and binds to MAF response elements in target
genes [7]. MAF is expressed in lens fibre cells during
lens development and it has been demonstrated that
homozygous Maf mutant mice had defective differenti-
ation of lens fibre cells [34]. MAF has been proposed to
regulate the expression of the lens specific genes including
Crystallins [33, 35]. It has been demonstrated that the ac-
tivity of the large MAF transcription factors is strongly
dependent on phosphorylation within the conserved
transactivation domain of the protein. This domain is rich
in aspartic acid, glutamic acid, serine, threonine and
proline residues [5, 6].
MAF is phosphorylated by glycogen synthase kinase 3

(GSK3), a serine/threonine protein kinase. Phosphorylation

Fig. 3 Schematic of the human MAF protein indicating the positions of reported variants (Adapted from Niceta et al. [27]). The protein contains
an N-terminal transactivation domain and a C-terminal DNA binding domain. The C-terminal domain consists of an extended homology region,
basic region (aa288–313) and leucine-zipper region (aa316–aa337). The variants associated with Aymé-Gripp syndrome are located in the N-terminal
transactivation domain including the variant (p.(Pro59Arg)) reported here (bolded and underlined). Other variants are located within the C-terminal
DNA-binding domain and are associated with other forms of congenital cataract mainly isolated
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increases the transactivation activity of MAF and induces
protein degradation [36]. GSK3 requires a priming phos-
phorylation on the substrate four amino acids C-terminal
of the target phosphorylation sites [27, 37]. It has been
demonstrated that the Thr58 residue is one of the GSK3
phosphorylation target sites [36] and residue Pro59 is lo-
cated between the target (Thr58) and primed residues
(Thr62) and is essential for GSK3 phosphorylation activity.
Thus, substitution of this residue to Arginine, as seen in
this family, might impair GSK3-mediated phosphorylation
of MAF proteins, resulting in inefficient ubiquitination of
the transcription factor and its decreased degradation
and functional dysregulation. Consistently, this residue
is highly conserved between species including mam-
mals, birds, fish and amphibians, further suggesting
its functional importance. Other variants at the same
residue p.(Pro59His) and p.(Pro59Leu) [27] have been
also reported to cause a similar phenotype.

Conclusion
We report a case of syndromic congenital cataract with
similar features to those described by Niceta et al [27].
Ayme-Gripp syndrome’s key features are congenital cat-
aracts, sensorineural hearing loss, intellectual disability,
seizures, brachycephaly, flat face and short stature. The
proband displayed all of the features except intellectual
disability (though he has Asperger syndrome) and short
stature. These features, combined with the novel identi-
fied variant in the transactivation domain of MAF, are
consistent with a diagnosis of Aymé-Gripp syndrome in
this family. This case is one of the most mildly affected
reported and this is the first report of an inherited
variant associated with this syndrome. This study shows
the power and feasibility of next generation sequencing
for variant detection in a clinically and genetically het-
erogeneous condition like syndromic congenital cataract,
and demonstrates the ability of the technology to diag-
nose patients on the basis of their genetic results in
combination with their phenotypic data.
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