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Abstract
Background: Peptidase inhibitor 3 (PI3) inhibits neutrophil elastase and proteinase-3, and has a potential
role in skin and lung diseases as well as in cancer. Genome-wide expression profiling of chorioamniotic
membranes revealed decreased expression of PI3 in women with preterm premature rupture of
membranes. To elucidate the molecular mechanisms contributing to the decreased expression in amniotic
membranes, the PI3 gene was searched for sequence variations and the functional significance of the
identified promoter variants was studied.

Methods: Single nucleotide polymorphisms (SNPs) were identified by direct sequencing of PCR products
spanning a region from 1,173 bp upstream to 1,266 bp downstream of the translation start site. Fourteen
SNPs were genotyped from 112 and nine SNPs from 24 unrelated individuals. Putative transcription factor
binding sites as detected by in silico search were verified by electrophoretic mobility shift assay (EMSA)
using nuclear extract from Hela and amnion cell nuclear extract. Deviation from Hardy-Weinberg
equilibrium (HWE) was tested by χ2 goodness-of-fit test. Haplotypes were estimated using expectation
maximization (EM) algorithm.

Results: Twenty-three sequence variations were identified by direct sequencing of polymerase chain
reaction (PCR) products covering 2,439 nt of the PI3 gene (-1,173 nt of promoter sequences and all three
exons). Analysis of 112 unrelated individuals showed that 20 variants had minor allele frequencies (MAF)
ranging from 0.02 to 0.46 representing "true polymorphisms", while three had MAF ≤ 0.01. Eleven variants
were in the promoter region; several putative transcription factor binding sites were found at these sites
by database searches. Differential binding of transcription factors was demonstrated at two polymorphic
sites by electrophoretic mobility shift assays, both in amniotic and HeLa cell nuclear extracts. Differential
binding of the transcription factor GATA1 at -689C>G site was confirmed by a supershift.

Conclusion: The promoter sequences of PI3 have a high degree of variability. Functional promoter
variants provide a possible mechanism for explaining the differences in PI3 mRNA expression levels in the
chorioamniotic membranes, and are also likely to be useful in elucidating the role of PI3 in other diseases.
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Background
PI3 [Gene ID: 5266] is a member of the 'trappin' gene
family [1]. The trappin gene family members are defined
by an amino-terminal transglutaminase substrate domain
consisting of hexapeptide repeats with the consensus
sequence of GQDPVK and a carboxy-terminal four-disul-
phide bond core. PI3, also known as trappin-2, elafin,
elastase specific inhibitor and skin-derived antileukopro-
teinase (SKALP), is a low-molecular weight, 6 kDa serine
protease inhibitor [2], that is capable of inhibiting neu-
trophil elastase (also known as elastase 2; ELA2; [GeneID:
1991]) and proteinase 3 (PRTN3; [GeneID: 5657]; also
known as the Wegener autoantigen, P29). PI3 has been
mapped to chromosome 20q12-13.1 [3], and this locus
contains 14 genes expressing protease inhibitor domains
with homology to whey acidic protein (WAP). Human
PI3 gene spans about 11,620 bp and consists of three
exons [2,4]. The gene has multiple transcription start sites
and the mRNA has been reported to have an unusually
short 5'-UTR (5'-untranslated region) [5].

Initially, PI3 was identified in human epidermis of psori-
atic patients [6], and later in bronchial secretions from
patients with bronchial carcinoma [7] and chronic
obstructive pulmonary disease [2], as well as in epidermal
[8] and breast tumors [9]. In addition to its antipeptidase
role, PI3 has antimicrobial activity and is a component of
the innate immune system to protect epithelial surfaces
from infection [10-13]. Expression of PI3 can be induced
by inflammatory mediators such as tumor necrosis factor
(TNF) and interleukin 1 beta (IL1B) [14,15].

In our previous report we identified PI3 as a down-regu-
lated gene in the chorioamnionitic membranes of patients
with preterm premature rupture of membranes (PPROM)
[16]. In this study, we investigated the possible molecular
mechanisms that control the expression of PI3 by carrying
out a detailed analysis of the PI3 gene sequences.

Methods
Genomic DNA isolation
Blood samples were obtained from 112 healthy unrelated
African-American individuals after written informed con-
sent. The collection of samples, and their utilization for
research purposes, was approved by the Institutional
Review Boards of Wayne State University and the National
Institute of Child Health and Human Development, NIH.
Genomic DNA was extracted from blood samples using
QIAGEN® DNA Blood BioRobot® 9604 kit (QIAGEN Inc.,
Valencia, CA.).

Direct sequencing of PCR products
Genomic DNA was used as a template to generate three
overlapping PCR products of 724 bp, 717 bp and 1,328
bp in size extending from 1,173 bp upstream to 1,266 bp

downstream of the translation start site of the PI3 gene
[GenBank: NT_011362]. Primers are listed in Table 1. All
PCRs were carried out in 100-µl volumes containing 1.5
mM of MgCl2, 0.2 mM dNTPs, 0.4 µM of each primer, 3 U
of Taq DNA polymerase (Roche Molecular Systems, Inc.,
Branchburg, NJ) and 100 ng of genomic DNA. A 10
minute initial denaturation at 94°C was followed by 40
cycles consisting of 30 s denaturation at 94°C, 30 s
annealing at 50°C to 55°C, and 1 minute extension at
72°C. PCR products were analyzed on 2% agarose gels.
PCR products were purified by ultrafiltration (Centricon
Centrifugal Filter Devices, Millipore, Bedford, MA), and
sequenced by cycle sequencing and dye terminator labe-
ling (ABI® BigDye™ Terminator v1.1 Cycle Sequencing kit,
Applied Biosystems, Foster City, CA). Sequencing reac-
tions were purified using gel filtration columns (CENTRI-
SEP, Princeton Separation, Adelphia, NJ) and run on 310
or 3700 Genetic Analyzer (Applied Biosystems).
Sequences were edited using BioEdit [17]. Fourteen SNPs
were genotyped from 112 unrelated individuals and nine
SNPs from 24 unrelated individuals (Table 2).

In silico search for transcription factor binding sites
The sequences in and around the SNP sites in the pro-
moter region were searched for putative transcription fac-
tor binding sites using three different computer programs:
TESS [18,19], Alibaba 2.1 [20,21], and MatInspector
[22,23]. Default parameters were used as search criteria.

Electrophoretic mobility shift assays (EMSA)
Oligonucleotides (Table 1) and their complementary
strands were designed and purchased as gel purified (IDT,
Coraville, IA). Complementary oligonucleotides were
annealed to each other to generate double-stranded
probes. EMSAs were performed using commercially avail-
able HeLa cell nuclear extracts (Promega, Madison, WI)
and nuclear extracts prepared from primary amnion cell
cultures as previously described [24] since we had previ-
ously demonstrated that PI3 protein was produced by a
variety of chorioamniotic membrane cell types with the
highest amount produced by the amniotic epithelial cells
[16]. Primary amnion cell cultures were established using
amniotic membranes obtained from women not in labor
at term who underwent elective cesarean deliveries for
obstetrical indications. All other reagents were purchased
from a commercial source and used according to the man-
ufacturer's protocol (Promega, Madison, WI). The con-
centration of poly(dI-dC) (Amersham Biosciences Corp.,
Piscataway, NJ) in the reaction was optimized to 0.05 µg/
µl to minimize non-specific binding. The concentrations
of components in 10 µl reaction mixtures were as follows:
1X binding buffer [without poly(dI-dC)], 3.75 µg of HeLa
or amnion cell nuclear extract, 0.05 µg/µl poly(dI-dC) and
50 fmole of 32P-labeled double-stranded probe (>50,000
cpm). All the components, except 32P-probe, were added
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to the reaction and incubated for 15 min on ice and 10
min at 20°C, followed by the addition of the 32P-labelled
probe, and incubation for 20 min at 20°C. For competi-
tion experiments, a 100-fold molar excess of unlabeled
double-stranded oligonucleotides was added to the reac-
tion mixture prior to the addition of the labeled probe.
For supershift experiments, polyclonal antibodies against
AP1 (Cat. No. sc-253X and sc-44X; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), and GATA1 (Active Motif, Carlsbad,
CA) were used. For AP1, after 20 min of incubation at
20°C with 32P-labelled probe, 400 ng of corresponding
antibodies were added to the reaction and incubated for
another 15 min at 20°C. For the GATA1 assay, antibodies
were added and incubated for 20 min at 20°C before add-
ing the labeled probe [25]. Samples were run on non-
denaturing 6% polyacrylamide gels in 0.5X TBE buffer, at
100 V for 80 min. X-ray film (Kodak, Rochester, NY) was

exposed to dried gels 2 to 5 h at -80°C depending on sig-
nal intensity.

Nomenclature for sequence variants and genes
The variants and nucleotides are described following the
guidelines of the Human Genome Variation Society
(HGVS) [26]. SNPs are described using the genomic
sequence AL049767.12 as a reference and numbered rela-
tive to the translation start site. Official gene symbols pro-
vided by Human Genome Organization (HUGO)
Nomenclature Committee (HGNC) were used [27].

Statistical analyses
Tests for deviations from HWE were performed by using
the χ2 goodness-of-fit test. Haplotypes were estimated fol-
lowing expectation maximization (EM) algorithm as
implemented in the software Arlequin [28].

Table 1: Oligonucleotide primers used in the study.

Primer Code Sequencea Purpose PCR product (bp) Annealing temperature 
(°C)

01F_PI3 tgagaagggtgtgtgaaggaa PCR and sequencing 724 55
01R_PI3 accactcccagcatcaa PCR and sequencing 724 55
02F_PI3 gagttttttgcaggaccagg PCR and sequencing 717 52
02R_PI3 gaacagaaagctgaaatctg PCR and sequencing 717 50
Seq_P13_1328bp_F caagctggactgcataaaga PCR 1328 54
Seq_P13_1328bp_R cagccttcttttgtgtcttc PCR 1328 53
Seq_P13_Int1_F tgcataaagattggtatggc sequencing - 52
Seq_PI3_Int2_F tttaaaccttgggtgtggac sequencing - 54
Seq_PI3_Int3_F gaggtgtaccttccctactc sequencing - 54
-1077_A_F ctctccttgtctcAgtgtattagagtc gel shift assay - -
-1077_G_F ctctccttgtctcGgtgtattagagtc gel shift assay - -
-1067_A_ F ctcagtgtattagAgtcgtttttctca gel shift assay - -
-1067_G_F ctcagtgtattaggGtcgtttttctca gel shift assay - -
+1063_A_F gtgtattagagtcAtttttctcagaca gel shift assay - -
+1063_G_F gtgtattagagtcGtttttctcagaca gel shift assay - -
-960_T_F ggaacccccgtttTcccctttcattac

tt
gel shift assay - -

-960_D_F ggaacccccgtttcccctttcattactt gel shift assay - -
-911_A_F gttaatagaccagaccaaAtctcaca

c
gel shift assay - -

-911_G_F gttaatagaccagaccaaGtctcaca
c

gel shift assay - -

-689_C_F tgtatacatgataCatgttttctacta gel shift assay - -
-689_G_F tgtatacatgataGatgttttctacta gel shift assay - -
-675_C_F atgttttctactaCtttctgattattt gel shift assay - -
-675_T_F atgttttctactaTtttctgattattt gel shift assay - -
-453_T_F ttgatgctgggagTggtaaaatgataa gel shift assay - -
-453_G_F ttgatgctgggagGggtaaaatgata

a
gel shift assay - -

-338_G_F gaataaccttcgGtgattcctttctct
tct

gel shift assay - -

-338_A_F gaataaccttcgAtgattcctttctct
tct

gel shift assay - -

-258_A_F taataagtgagccAgcacttctactct gel shift assay - -
-258_G_F taataagtgagccGgcacttctactc

t
gel shift assay - -

aThe nucleotide in upper case is the variant nucleotide.
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Results
SNP genotyping and haplotype construction
When this study was initiated, only two polymorphisms
were known to exist in the PI3 gene, neither of them in the
promoter region. We identified 23 SNPs (Table 2 and Fig
1) in the PI3 gene sequences of 24 unrelated individuals

by direct sequencing of PCR products that spanned the
region from 1,173 bp upstream to 1,266 bp downstream
of the translation start site. Of the 23 SNPs, nine are in the
dbSNP database [29] (Table 2). Eleven SNPs were located
in the promoter region, one in exon 1, seven in intron 1,
two in exon 2 and two in intron 2. To obtain more reliable

Locations of the 23 SNPs detected in the region from 1,173 bp upstream to 1,266 bp downstream of the translation start site of the PI3 geneFigure 1
Locations of the 23 SNPs detected in the region from 1,173 bp upstream to 1,266 bp downstream of the translation start site 
of the PI3 gene. Dark shaded boxes represent the three exons and light shaded boxes represent introns. For more information 
on the SNPs, see Table 2.

Table 2: Minor allele frequencies of the 23 SNPs detected in the PI3 gene.

Location

GenBank entry 
positiona

ntb region Non-
synonymous 
substitution

MAF rs number MAF in dbSNP

48460A>G -1077 promoter 0.107
48470A>G -1067 promoter 0.107
48474G>A -1063 promoter 0.121
48577T>Del -960 promoter 0.103
48626G>A -911 promoter 0.009
48669C>G -868 promoter 0.138 2267863
48848C>G -689 promoter 0.107
48862C>T -675 promoter 0.107
49084T>G -453 promoter 0.005
49199G>A -338 promoter 0.107
49279A>G -258 promoter 0.005
49586C>T +50 exon 1 T17M 0.107 17333103 0.169
49681C>A +145 IVS 1 0.107 17333180 0.169
49698T>A +162 IVS 1 0.455 1983649 0.471
49940C>G +404 IVS 1 0.083c

49944C>T +408 IVS 1 0.125c

50105C>G +569 IVS 1 0.146c 16989785 0.056
50163A>G +627 IVS 1 0.146c 17424356 0.169
50287T>A +751 IVS 1 0.063c 6032040 0.176
50495A>C +959 exon 2 T34P 0.125c 2664581 0.156
50659C>T +1123 exon 2 0.020c

50762C>A +1226 IVS 2 0.125c

50770C>A +1234 IVS 2 0.125c 17424474 0.152

aGenBank accession No. AL049767.12.
bLocation is with respect to translation start site.
cFrequency estimated from 24 unrelated individuals.
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allele frequency estimates, a larger sample of 112 unre-
lated individuals was genotyped for 14 SNPs. Of the 23
SNPs, three (-911G>A, -453T>G and -258A>G) had
minor allele frequencies (MAF) of <0.01 and 20 SNPs had
a MAF between 0.02 and 0.46 (Table 2). The genotype fre-
quencies of all SNPs were in HWE. Three SNPs (+50C>T,
+959A>C and +1123C>T) altered the codons (Table 2).
However, only two SNPs (+50C>T and +959A>C) altered
amino acid (Table 2). The T allele at +50 altered the 17th

amino acid from threonine to methionine and C allele at
+959 altered the 34th amino acid from threonine to pro-
line. The 17th amino acid is part of the signal peptide
sequence, whereas the 34th amino acid is part of the pro-
protein.

Thirteen of the 23 SNPs were in complete linkage disequi-
librium (Table 3). Altogether 16 haplotypes were identi-
fied (Table 3). PI3_F was the most common haplotype
followed by PI3_H and PI3_K.

Effect of SNPs on protein binding
We performed in silico searches for putative transcription
factor binding sites at the 11 SNP sites in the promoter
region of the PI3 gene. Except for one SNP (-675C>T), all
other sites showed potential differential binding for at
least one transcription factor (Table 4). In other words,
the transcription factor was predicted to bind to one of the
alleles, but not the other for these 10 SNPs.

To verify experimentally the differential binding of tran-
scription factors, we conducted electrophoretic mobility
shift assays (EMSA) for 10 SNP sites located in the pro-
moter region. Due to the presence of a long stretch of AC-
repeats, EMSA was not carried out for the SNP -868C>G.
Of the 10 putative sites, six (-1077A>G, -1067A>G, -
1063G>A, -960T>Del, -689C>G, -338G>A) showed dif-
ferential binding by transcription factors in nuclear
extracts derived from HeLa cells (not shown), while only
two (-1063G>A and -689A>G) showed differential bind-
ing using amnion cell nuclear extract (Fig 2). Those SNP
sites that did not show differential binding with HeLa cell
nuclear extract, also did not show differential binding
with amnion cell nuclear extracts. A transcription factor in
HeLa cell nuclear extract bound to -960T>Del. There was
however, no binding by a transcription factor in amnion
cell nuclear extract to this same site. No transcription fac-
tor in either HeLa or amnion cell nuclear extract bound to
the -258A>G site. Our interest was the transcriptional reg-
ulation of the PI3 gene in amnion cells [16]. We, there-
fore, focused on the two SNPs (-1063G>A and -689C>G,
Fig 2) that showed differential binding by transcription
factors derived from the amnion cell nuclear extract. For -
1063A>G and -689C>G, the banding patterns represent-
ing the protein-DNA complexes were similar when using
HeLa and amnion cell nuclear extracts, although the band

intensities were lower with the latter, probably due to a
lower concentration of functional proteins (Fig 2). To
determine the specificity of the binding, we used a compe-
tition assay (Fig 3). The differential binding that persisted
after cross-competition (100-fold) was considered to be
due to the SNP. For -1063A>G, one protein-DNA complex
persisted after a labeled double-stranded A-probe was
competed with double-stranded sequence differing only
at the SNP (G instead of A). For -689C>G, two protein-
DNA complexes persisted after labeled double-stranded
G-probe was competed with a double-stranded sequence
differing only at the SNP (C instead of G) (Fig 3).

Our in silico search predicted that AP1 was the transcrip-
tion factor that would bind differentially at the -1063
SNP. To investigate this we used 100-fold excess of a com-
petitor with the consensus sequence for AP1 binding or
the anti-AP1 antibody in the reaction. No change in the
banding pattern was observed in the competition assay
(Fig 4). Similarly, no supershift with anti-c-jun or anti-c-
fos antibody was observed for -1063G>A polymorphism
using amnion or HeLa cell nuclear extracts (Fig 4). Since a
positive control, using consensus AP1 binding sequence,
demonstrated a supershift against anti-c-jun and anti-c-
fos antibodies (Fig 4), a failure in the supershift was
unlikely to be due to technical problems. We, therefore,
concluded that the protein that binds to the A probe at nt
-1063 does not contain the AP1 epitope.

For the SNP at nt -689, the transcription factor, whose
binding was predicted to change due to the SNP, was
GATA1 (Table 5). As shown in Fig 5, a consensus sequence
containing the GATA1 binding site was able to compete
with the -689G probe (Fig 5A) and a supershift was
observed with anti-GATA1 antibody when using amniotic
cell nuclear extract (Fig 5B) indicating that GATA1 binds
to the G-allele of the -689C>G polymorphism in the pro-
moter region of PI3 gene.

Discussion
We observed a high degree of polymorphism within the
PI3 gene with 23 SNPs detected, 11 of which were located
in the promoter region. We found an amino acid substitu-
tion, T34P, in the 4th amino acid of the amino terminal-
transglutaminase substrate domain, GQDPVK, of PI3. To
determine if this SNP has a significant effect on the func-
tion of this domain, we searched for the consensus
sequence of the transglutaminase substrate in other mam-
mals. A similar sequence domain was identified in semi-
nal vesicle protein I (Semg1) repeats in guinea pig
(PROSITE documentation PDOC000282). Semg1 is a
clotting protein that serves as the substrate in the forma-
tion of the copulatory plug [30]. Covalent clotting of this
protein is catalyzed by a transglutaminase and involves
the formation of γ-glutamyl-ε-lysine crosslinks. The con-
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EMSA showing the banding patterns with HeLa and amniotic cell nuclear extracts for -1063A>G and -689C>G sitesFigure 2
EMSA showing the banding patterns with HeLa and amniotic cell nuclear extracts for -1063A>G and -689C>G sites. The 
arrows indicate protein-DNA complexes formed when transcription factors bind to their target sites.
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I3_B 0.021 0.0258 A A A T G C C C T G A C C T C C C
I3_C 0.021 0.0154 A A A T G C C C T G A C C T G C C
I3_D 0.021 0.0132 A A G T A C C C T G A C C T C C G
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Standard deviation.
These SNP loci are in complete linkage disequilibrium with each other.

ble 4: Results from in silico searches for putative transcription factor binding sites.

Allele Predicted transcription factor(s)a

ocation Major Minor Major allele Minor allele

1077 A G Adf-2a
1067 A G TBF1
1063 G A GCN4 AP1
960 T Deletion NFATC2
911 G A SP1, AP1
868 C G NRC3C1
689 C G GATA1
675 C T
453 T G MAZ
338 G A AP1
258 A G NF1, NFE2, Zta

The transcription factors, whose binding site is predicted to change by the SNP, are listed here.
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These findings suggest the involvement of GATA1 in the
transcriptional regulation of PI3 gene in amnion cells and
provide a possible genetic explanation for the downregu-

lation of PI3 in chorioamniotic membranes from PPROM
cases. We have previously demonstrated that the levels of

EMSA with amniotic cell nuclear extract for the nt -689C>G SNP siteFigure 5
EMSA with amniotic cell nuclear extract for the nt -689C>G 
SNP site. (A) Competition with -689C, -689G and GATA 
consensus sequences. The arrows indicate protein-DNA 
complexes which consistently persisted after cross-competi-
tion. (B) Supershift experiment. S, shift; SS, supershift.

EMSA showing self- and cross-competition for differential binding for -1063A>G and -689C>G sites with amniotic or HeLa cell nuclear extractsFigure 3
EMSA showing self- and cross-competition for differential binding for -1063A>G and -689C>G sites with amniotic or HeLa cell 
nuclear extracts. The arrows indicate the differential binding that consistently persisted after cross-competition.

Results of competition and supershift experiments for the -1063A>G site using HeLa cell nuclear extractFigure 4
Results of competition and supershift experiments for the -
1063A>G site using HeLa cell nuclear extract. S, shift; SS, 
supershift. Arrow on the left indicates a protein-DNA com-
plex specific to the transcription factor binding to the A-
allele.
Page 8 of 11
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neutrophil elastase (ELA2, [LocusID: 1991]) are increased
in the amniotic fluid of patients with PPROM and acute
chorioamnionitis [32]. It is therefore plausible to specu-
late that the production of PI3 in the fetal membranes is
to protect the tissue from the damage that could be caused
by increased amounts of neutrophil elastase. Our recent
study [16] showing decreased expression of PI3 in the
chorioamniotic membranes from patients with PPROM
supports our hypothesis that patients who are not capable
of producing adequate amounts of PI3 may be predis-
posed to PPROM.

It has been suggested that PI3 is involved in the patho-
physiology of many clinical conditions. For example, PI3
was found in the epidermis of patients with psoriasis, but
not in normal human epidermis [33]. Higher levels of PI3
were also observed in bronchial secretions from patients
with chronic obstructive pulmonary disease [2] and bron-
chial carcinoma [7], and the expression of PI3 was
decreased in breast [9] and in epidermal tumors [8,9]. The
SNPs identified here will likely be useful for studying the
molecular mechanisms of these diseases.

Conclusion
A high degree of polymorphism was detected in the PI3
gene with 23 SNPs, 11 of which are in the promoter
region. Two SNP sites (-1063G>A and -689C>G) showed
differential binding of transcription factors in nuclear
extracts derived from both amnion and HeLa cells sug-
gesting possible involvement of these two SNPs in the
expression of PI3 gene. As the SNP site at -1063G>A did
not bind to the transcription factor AP1 as suggested by in
silico search, the bound transcription factor may not be in
current database and needs to be characterized. Binding of
GATA1 to the G allele at the -689C>G site suggests the
involvement of GATA1 in the transcriptional regulation of
PI3 gene in amnion cells. We have performed a genetic
association study with PI3 variants, including the -
689C>G variant, and found that it is associated with
PPROM [manuscript in preparation]. We also previously
demonstrated by immunohistochemistry that many cell
types of the chorioamniotic membranes produce PI3 and
that PI3 protein is decreased in chorioamniotic mem-
branes from PPROM cases [16]. Together, these lines of
evidence provide a plausible genetic explanation for the

Table 5: Previously reported transcription factor binding sites in the PI3 promoter.

Transcription factor Evidencec

Gene Symbol Alias Positiona AL049767.12b Author PubMedID IS E DM

NFKB1 NFκB 48564–48581 King et al. 2003 14521952 +
Pol et al. 2003 12542536 + +

-479 – -470 49058–49067 King et al. 2003 14521952 +
-340 – -331 49197–49206 King et al. 2003 14521952 +
-164 – -153 49373–49384 Zhang 1995 7780965 + +

Bingle et al. 2001 11472979 + +
King et al. 2003 14521952 +
Pol et al. 2003 12542536 + +

JUN AP1 -545 – -537 48992–49000 Zhang 1995 7780965 + +
Zhang 1997 9377579 + +
King et al. 2003 14521952 +
Pol et al. 2003 12542536 + +

-356 – -345 49181–49192 Sallenave et al. 1994 7946401 +
Pol et al. 2003 12542536 + +

SP1 -82 – -74 49455–49463 Zhang 1995 7780965 + +
Pol et al. 2003 12542536 + +

CEBPB NFIL6 -386 – -378 49151–49159 Pol et al. 2003 12542536 + +
-356 – -345 49181–49192 Pol et al. 2003 12542536 + +
-307 – -299 49230–49238 Pol et al. 2003 12542536 + +
-203 – -194 49334–49343 Sallenave et al. 1994 7946401 +

Pol et al. 2003 12542536 + +
-126 – -117 49411–49420 Pol et al. 2003 12542536 + +

OCT1 -590 – -582 48947–48955 Zhang 1995 7780965 + +
EST1 PEA-3 -484 – -479 49053–49058 Sallenave et al. 1994 7946401 +

aPosition is given relative to ATG.
bWe have mapped the location used in the studies to the current GenBank sequence to standardize the numbering between all studies.
cIS, in silico; E, EMSA; DM, deletion mapping.
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down regulation of PI3 in chorioamniotic membranes
from PPROM cases. Previously the involvement of PI3 in
the pathophysiology of many clinical conditions was sug-
gested. The SNPs identified here provide the tools for
studying the molecular mechanism of these diseases.
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