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Abstract

Background: Venous Thrombosis (VT) is a common multifactorial disease with an estimated heritability between
35% and 60%. Known genetic polymorphisms identified so far only explain ~5% of the genetic variance of the
disease. This study was aimed to investigate whether pair-wise interactions between common single nucleotide
polymorphisms (SNPs) could exist and modulate the risk of VT.

Methods: A genome-wide SNP x SNP interaction analysis on VT risk was conducted in a French case–control study
and the most significant findings were tested for replication in a second independent French case–control sample. The
results obtained in the two studies totaling 1,953 cases and 2,338 healthy subjects were combined into a meta-analysis.

Results: The smallest observed p-value for interaction was p = 6.00 10-11 but it did not pass the Bonferroni significance
threshold of 1.69 10-12 correcting for the number of investigated interactions that was 2.96 1010. Among the 37
suggestive pair-wise interactions with p-value less than 10-8, one was further shown to involve two SNPs, rs9804128
(IGFS21 locus) and rs4784379 (IRX3 locus) that demonstrated significant interactive effects (p = 4.83 10-5) on the
variability of plasma Factor VIII levels, a quantitative biomarker of VT risk, in a sample of 1,091 VT patients.

Conclusion: This study, the first genome-wide SNP interaction analysis conducted so far on VT risk, suggests that
common SNPs are unlikely exerting strong interactive effects on the risk of disease.
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Background
Venous Thrombosis (VT) is a common complex disease
affecting ~0.2% of individuals a year. VT includes deep
vein thrombosis and pulmonary embolism, the latter
being characterized by a one year mortality rate of
~10% excluding patients with malignancies [1]. As a
complex trait, VT is considered as resulting from the
interplay between environmental and genetic factors,
that could interact with each other, to modulate VT risk
[2,3]. The recent Genome Wide Association Studies
(GWAS) strategy brought great hopes to identify novel
susceptibility loci to human diseases and some true
successes were obtained in the field of VT genetics.
Novel genes recently identified to harbor common sus-
ceptibility alleles (i.e. with allele frequency > 0.05) for
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VT include GP6, HIVEP1, KNG1, STAB2, STXBP5 and
VWF (reviewed in [4]). However, none of the identified
risk alleles demonstrated genetic effects stronger than
those of the established VT-associated genes known
before the GWAS era, ABO, F2, F5 and FGG [5]. As for
most multifactorial diseases, risk alleles for VT identified
so far only explain a small proportion of the familial risk
of disease [6]. Alternative strategies are needed to iden-
tify the army sources that could contribute to the unex-
plained heritability and these include gene-gene and gene-
environment interactions, deep sequencing, transcriptomic
analyses and epigenomics [7-10].
In this work, we were interested in assessing whether

interaction between common polymorphisms could con-
tribute to VT risk. To our knowledge, studies that have
investigated this hypothesis were mainly dedicated to
known candidate genes [11,12] and no attempt has been
made to address it without any a priori hypothesis. This
is why, we here take advantage of the large amount of
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genetic information we have collected through two
French GWAS on VT [6,13] to conduct the first
genome-wide search for SNP x SNP interaction with
respect to VT risk.

Methods
This work was based on two French GWAS on VT, the
Early-Onset Venous Thrombosis (EOVT) and the Marseille
Thrombosis Association (MARTHA) studies. These two
studies have already been extensively described in [5,6,14]
for EOVTand in [6,15-17] for MARTHA.

Ethical approval
Each individual study was approved by its institutional
ethics committee and informed written consent was
obtained in accordance with the Declaration of Helsinki.
Ethics approval were obtained from the “Departement
santé de la direction générale de la recherche et de
l’innovation du ministère” (Projects DC: 2008-880 &
09.576) and from the institutional ethics committees of
the Kremlin-Bicetre Hospital.

Studied populations and phenotype measurements
Briefly, in both studies, VT patients were cases, with a
documented history of VT and free of well known strong
genetic risk factors including antithrombin (AT), protein
C (PC) or protein S (PS) deficiency, homozygosity for
FV Leiden or F2 20210A mutations and lupus anti-
coagulant. In EOVT, patients were selected to experi-
ence idiopathic VT before the age of 50. Controls were
French individuals selected from two healthy popula-
tions, SUVIMAX [18] and the Three City Study [19], for
EOVT and MARTHA, respectively. The EOVT case–
control study included 411 patients and 1,228 healthy
subjects, while MARTHA was composed of 1,542 pa-
tients and 1,110 healthy subjects, all the individuals
being of European origin, with the majority being of
French descent. A summary of the population charac-
teristics is provided in Additional file 1.
Several key quantitative biomarkers of VT risk have been

measured in MARTHA patients. The detailed description
of the corresponding measurements has been previously
described in [15] for AT, PC, PS and the agkistrodon
contortrix venom (ACV) test that explores the PC path-
way, in [17] for Factor VIII (FVIII) and von Willebrand
Factor (VWF), and in [16] for Activated Partial Thrombo-
plastin Time (aPTT) and Prothrombin Time (PT).

Genotyping
Individuals participating in the EOVT study were geno-
typed for 317,139 SNPs using the Illumina Sentrix
HumanHap300 Beadchip. The application of the quality
control criteria described in [5] led the final selection of
291,872 autosomal SNPs for analysis. As detailed in [6],
individuals participating to the MARTHA GWAS
were typed with the Illumina Human 610-Quad and
Human660W-Quad Beadchips. 481,002 autosomal SNPs
remained for analysis after quality control.
Statistical analysis
Our search for genome wide interactions was conducted
in two steps. A first screening for pairwise SNPs interac-
tions was carried out in the EOVT study. The first part
of this discovery screening consisted in reducing redun-
dancy between SNPs by keeping only one SNP out of all
SNPs in strong pairwise linkage disequilibrium (r2 >
0.90) within a window of 50 kb. Pairwise SNPs interac-
tions were then tested by a logistic regression analysis
where both SNPs were coded under an additive model
(0,1 and 2 according to the number of rare alleles) and
an interaction term was added in the model. For this, we
used the plink software [20]. All interactions significant
at p < 10-4 were further assessed at a second step in the
larger MARTHA study. When SNPs were not available
in the latter sample, the best available proxy in term of
r2, according to the SNAP database [21], was used. The
same logistic regression model was applied in the
MARTHA study. Results obtained in the two GWAS
were then meta-analyzed through a fixed-effect model
relying on the inverse-variance weighting as implemented
in the METAL software (http://www.sph.umich.edu/csg/
abecasis/metal). Homogeneity of associations across the
two GWAS studies was tested using the Mantel-Haenszel
method [22].
The most significant interactions were then further

assessed in relation to quantitative biomarkers of VT
risk in MARTHA patients. For this, standard linear re-
gression analyses were conducted with the same additive
allele coding as for the binary trait analysis. Analyses
were adjusted for age, sex and ABO blood group. For
AT, PC, PS and ACV, individuals under anticoagulant
were excluded. The THESIAS software [23] was used to
illustrate the detected pairwise SNP interactions.
Results and discussion
We first applied a pairwise tagging approach to discard
redundant SNPs using a r2 threshold of 0.90, that led to
the final selection of 243,189 SNPs from the EOVT
study.
2.96 1010 pairwise SNPs interactions were then tested

in EOVT, but none of them reached the Bonferroni
corrected p-value of 1.69 10-12. Nevertheless, all interac-
tions with p-value less than 10-4 (n = 2,126,084) were
further assessed in MARTHA. The smallest observed
p-value was 6.73 10-7, but it did not pass the Bonferroni
correction (p < 2.35 10-8) for the number of interactions
tested at this second step.
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Table 1 Pairwise SNP interactions with suggestive statistical evidence (p < 10-8) in the meta-analysis of two GWAS datasets gathering 1,953 cases and 2,338
controls

SNP1 X SNP2

EOVT MARTHA Combined

MAF(2) Interaction MAF Interaction

rsID Alleles(1) CHR rsID Alleles CHR SNP1 SNP2 OR(3) P SNP1 SNP2 OR P OR (4) P Cochran Q(5) I2 P(6)

rs493014 T/G 9 rs886090 G/A 9 0.31 0.33 1.72 1.85 × 10-5 0.30 0.31 1.6 6.73 × 10-7 1.64 6.00 × 10-11 0.21 0% 0.65

rs1336472 G/A 1 rs4715555 A/G 6 0.41 0.39 1.64 4.10 × 10-5 0.40 0.38 1.49 2.00 × 10-6 1.54 4.24 × 10-10 0.42 0% 0.52

rs380904 G/A 8 rs8086028 G/A 18 0.30 0.27 1.96 3.76 × 10-6 0.29 0.31 1.55 1.12 × 10-5 1.67 4.51 × 10-10 1.79 44% 0.18

rs6815916 A/G 4 rs6092326 C/T 20 0.09 0.48 2.37 4.32 × 10-5 0.09 0.47 1.98 2.95 × 10-6 2.10 6.84 × 10-10 0.51 0% 0.48

rs2282015 T/G 10 rs13050454 G/A 21 0.41 0.43 1.81 3.52 × 10-7 0.41 0.42 1.37 7.68 × 10-5 1.50 8.36 × 10-10 3.90 74% 0.05

rs7648704 T/G 3 rs4868644 C/T 5 0.33 0.49 1.64 7.36 × 10-5 0.33 0.49 1.52 2.88 × 10-6 1.56 9.89 × 10-10 0.26 0% 0.61

rs1985317 T/C 9 rs827637 G/A 10 0.39 0.46 0.55 7.13 × 10-7 0.41 0.46 0.72 7.73 × 10-5 0.66 1.32 × 10-9 3.42 71% 0.06

rs2321744 A/G 13 rs6497540 T/G 16 0.09 0.41 0.43 8.61 × 10-5 0.1 0.42 0.52 2.98 × 10-6 0.49 1.38 × 10-9 0.55 0% 0.46

rs315122 T/G 12 rs884483 T/C 15 0.29 0.11 2.61 1.92 × 10-5 0.31 0.12 1.87 7.90 × 10-6 2.05 1.42 × 10-9 1.59 37% 0.21

rs1423386 A/G 5 rs6491679 T/G 13 0.2 0.29 1.92 7.24 × 10-5 0.2 0.29 1.66 4.17 × 10-6 1.73 1.63 × 10-9 0.56 0% 0.45

rs7714670 T/C 5 rs12880735 G/A 14 0.44 0.34 1.75 4.59 × 10-6 0.44 0.36 1.42 3.32 × 10-5 1.52 1.75 × 10-9 1.99 50% 0.16

rs9392653 C/T 6 rs7780976 A/C 7 0.27 0.18 2.14 2.28 × 10-6 0.29 0.19 1.57 5.49 × 10-5 1.74 1.83 × 10-9 2.47 60% 0.12

rs9804128 A/G 1 rs4784379 G/A 16 0.27 0.25 1.97 2.73 × 10-5 0.26 0.24 1.60 9.45 × 10-6 1.71 1.90 × 10-9 1.14 13% 0.28

rs1364505 G/A 7 rs1204660 G/A 20 0.30 0.16 2.14 2.32 × 10-5 0.33 0.16 1.67 1.11 × 10-5 1.80 2.10 × 10-9 1.35 26% 0.25

rs2288073 A/G 2 rs10771022 G/T 12 0.30 0.34 1.71 7.94 × 10-5 0.29 0.34 1.55 5.51 × 10-6 1.60 2.11 × 10-9 0.35 0% 0.55

rs1367228 C/A 2 rs3905075 C/T 13 0.43 0.41 1.61 9.44 × 10-5 0.45 0.4 1.44 4.22 × 10-6 1.49 2.20 × 10-9 0.62 0% 0.43

rs536477 G/A 1 rs1937920 A/G 10 0.43 0.26 0.57 3.27 × 10-5 0.43 0.27 0.67 1.40 × 10-5 0.63 2.93 × 10-9 0.90 0% 0.34

rs2710201 A/G 7 rs3780293 G/A 9 0.06 0.34 0.35 6.84 × 10-5 0.06 0.36 0.43 9.92 × 10-6 0.40 3.30 × 10-9 0.38 0% 0.54

rs12541254 G/A 8 rs305009 G/A 15 0.35 0.23 1.99 3.15 × 10-6 0.34 0.23 1.50 7.63 × 10-5 1.65 3.33 × 10-9 2.39 58% 0.12

rs4507975 A/G 1 rs9914518 G/A 17 0.29 0.46 0.61 9.59 × 10-5 0.29 0.47 0.67 7.95 × 10-6 0.65 3.58 × 10-9 0.32 0% 0.57

rs2771051 T/G 9 rs827637 G/A 10 0.37 0.46 0.52 9.27 × 10-8 0.37 0.46 0.75 4.59 × 10-4 0.67 3.82 × 10-9 6.08 84% 0.01

rs10516089 T/C 5 rs11072930 T/C 15 0.32 0.28 0.51 2.66 × 10-6 0.31 0.3 0.69 7.19 × 10-5 0.63 3.86 × 10-9 3.12 68% 0.08

rs10504130 G/A 8 rs2847351 A/G 18 0.15 0.3 2.46 1.04 × 10-5 0.14 0.32 1.69 3.07 × 10-5 1.88 4.46 × 10-9 2.40 58% 0.12

rs318497 G/A 6 rs7019259 A/G 9 0.49 0.07 0.29 2.56 × 10-6 0.49 0.07 0.51 8.40 × 10-5 0.43 4.54 × 10-9 3.21 69% 0.07

rs6695223 T/C 1 rs1763510 C/T 6 0.12 0.39 2.49 6.00 × 10-6 0.13 0.39 1.66 4.31 × 10-5 1.86 4.70 × 10-9 2.91 66% 0.09

rs1336708 A/G 13 rs1423386 A/G 5 0.26 0.2 0.51 6.77 × 10-5 0.25 0.2 0.61 1.20 × 10-5 0.58 4.85 × 10-9 0.79 0% 0.37

rs6771316 G/A 3 rs10986432 T/C 9 0.14 0.18 2.41 4.64 × 10-5 0.13 0.17 1.99 2.20 × 10-5 2.13 5.26 × 10-9 0.50 0% 0.48

rs664910 A/G 3 rs877228 G/A 15 0.30 0.47 1.63 6.05 × 10-5 0.30 0.44 1.44 1.92 × 10-5 1.50 6.63 × 10-9 0.71 0% 0.40

rs9945428 C/A 18 rs4823535 G/A 22 0.30 0.28 0.58 7.47 × 10-5 0.30 0.26 0.65 1.85 × 10-5 0.62 6.88 × 10-9 0.46 0% 0.50

rs1910358 T/C 5 rs9981595(7) T/G 21 0.23 0.12 2.21 9.60 × 10-5 0.23 0.11 1.93 1.63 × 10-5 2.03 7.14 × 10-9 0.30 0% 0.59
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Table 1 Pairwise SNP interactions with suggestive statistical evidence (p < 10-8) in the meta-analysis of two GWAS datasets gathering 1,953 cases and 2,338
controls (Continued)

rs6771725 G/T 3 rs10507246 G/T 12 0.26 0.08 2.6 4.02 × 10-5 0.28 0.09 2.04 3.77 × 10-5 2.22 8.60 × 10-9 0.71 0% 0.40

rs16865717 C/T 2 rs2009579 C/T 20 0.27 0.36 1.9 5.22 × 10-6 0.29 0.36 1.43 9.59 × 10-5 1.56 8.82 × 10-9 2.88 65% 0.09

rs2028385 A/G 12 rs2038227 A/C 16 0.16 0.39 2.19 3.36 × 10-7 0.16 0.37 1.47 7.11 × 10-4 1.69 8.82 × 10-9 4.40 77% 0.04

rs10476160 A/G 5 rs1707420 C/T 8 0.21 0.48 0.56 6.35 × 10-5 0.20 0.48 0.65 2.48 × 10-5 0.62 9.09 × 10-9 0.75 0% 0.39

rs971572 C/A 1 rs10828151 A/C 10 0.32 0.07 0.35 3.43 × 10-5 0.32 0.07 0.47 4.38 × 10-5 0.42 9.30 × 10-9 0.88 0% 0.35

rs6858430 C/T 4 rs4800250 A/G 18 0.20 0.40 1.86 2.44 × 10-5 0.21 0.40 1.52 5.16 × 10-5 1.62 9.67 × 10-9 1.30 23% 0.25

rs467650 T/C 5 rs7153749 T/C 14 0.36 0.44 0.59 1.69 × 10-5 0.37 0.44 0.71 6.00 × 10-5 0.67 9.91 × 10-9 1.75 43% 0.19

(1) Common/minor alleles.
(2) Minor Allele Frequency.
(3) Odds ratio for VT associated with the interaction of the two minor alleles under a logistic model assuming additive allelic effect.
(4) Pooled Odds ratio derived from a fixed-effect model analysis using the inverse-variance method as implemented in METAL. None of the reported interactions demonstrated evidence for heterogeneity across GWAS
samples after Bonferroni correction (p > 0.05/37 for all homogeneity test pvalues).
(5) Cochran Q statistics assessing the extend of heterogeneity across the two GWAS samples.
(6) P value of the Mantel-Haenszel statistic assessing heterogeneity across GWAS samples.
(7) rs2836978 serves as a proxy (r2 = 1) for rs9981595 in the discovery GWAS.
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Table 3 Plasma FVIII levels according to the rs9804128
and rs4784379 polymorphisms in 1091 VT patients

rs4784379

rs9804128 AA AG GG

AA 115.91 (32.80) 132.70 (49.75) 136.16 (51.35)

N = 34 N = 231 N = 321

GA 155.93 (77.17) 141.42 (56.03) 131.76 (47.11)

N = 16 N = 144 N = 266

GG 156.00 (68.98) 150.17 (42.90) 122.90 (60.11)

N = 4 N = 23 N = 52

Mean (SE) are shown.
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The meta-analysis of the results obtained in EOVT
and MARTHA led to 37 suggestive interactions with
p-values lower than 10-8 and with consistent effects in
both studies (Table 1). The smallest one, p = 6.00 10-11,
was observed for two SNPs in the vicinity of SURF6
gene that is ~40 kb from the ABO locus. After adjusting
for the ABO blood group, this interaction vanished (p =
0.37) suggesting that this interaction had captured the
ABO effect through the linkage disequilibrium extending
at this locus.
Despite the lack of study-wise statistical interactions,

we could not exclude that some genuine interaction
phenomena hide in the list of suggestive interactions
(Table 1). We hypothesized that the use of additional
biological information on quantitative biomarkers of
VT risk could help in digging into this list. We therefore
investigated whether the identified interactive SNPs
could exert their effect on VT biomarkers available in
MARTHA: ACV, aPTT, AT, Fibrinogen, FVIII, PC, PS,
PT and VWF. At the Bonferroni threshold of 1.50 10-4

for the number of performed tests (i.e. 333 = 37 SNPs x 9
phenotypes ), one interaction was statistically significant
(p = 4.82 10-5). It involved rs9804128 lying in the promoter
region of the IGSF21 gene and the rs4784379 mapping
130 kb downstream the IRX3 locus, the two SNPs
interacting to modulate plasma FVIII levels. As shown in
Table 2, carriers of the rs9804128-G and rs4784379-A
alleles were associated with the highest plasma FVIII
levels compared to the three other alleles combinations.
At contrast, these individuals were associated with ~2
fold decreased in VT risk, the frequency of the GA com-
bination being 8.3% in controls and 4.6% in patients
(Table 2). Looking deeply to the diplotypes formed by
these two SNPs revealed that patients carrying without
any ambiguity the GA combination, ie those carrying
either the rs9804128-GG genotype and the rs4784379-A
allele or the rs9804128-GA genotype and the rs4784379-
AA genotype, exhibited the highest plasma FVIII levels
Table 2 Interactive effects of the rs9804128 and rs4784379 o

EOVT MARTHA

rs9804128 rs4784379

Frequency Frequency

Controls Cases Controls Ca

N = 1,228 N = 411 N = 1,110 N =

A G 0.561 0.530 0.579 0.

A A 0.169 0.198 0.165 0.

G G 0.190 0.237 0.170 0.

G A 0.080 0.035 0.085 0.

p(2) = 2.73 10-5 p(2) = 9.45 10-

(1) In MARTHA, 1091 patients were measured for FVIII levels.
(2) p-value of the interaction term between the two SNPs in the logistic regression a
(3) p-value obtained from the meta-analysis of the EOVT and MARTHA samples usin
(4) p-value of the interaction term between the two SNPs in the linear regression an
(Table 3). Individuals ambiguous for the GA combination,
who are those heterozygotes at both rs9804128 and
rs4784379, were at intermediate FVIII levels (Table 3).
To our knowledge, this work is the first attempt in the

field of VT genetics to investigate, at the genome-wide
scale, the presence of interactive effects derived from
common SNPs. This study did not detect interactions
that reached the Bonferroni correction for the number
of investigated interactions. The absence of such inter-
action could of course be due to low power. According
to the distributions of the minor allele frequencies and
the marginal allelic effects observed in the EOVT study,
we computed the minimum OR for interaction that
could be detectable with a 80% power [24,25]. These cal-
culations suggest that our discovery cohort was only well
powered to detect interactive ORs greater than 2.8 at the
genome-wide statistical level of 1.69 10-12 and ORs
greater than 1.8 at the p <10-4 threshold [Additional
file 2]. The power to detect in our second sample the
most significant observed interactions was about 50%
[24,25]. As a consequence, despite the use of two large
GWAS datasets on VT, this study was not powerful
enough to detect interactions between common SNPS
characterized by interactive ORs smaller than ~2.
n the risk of VT and on plasma FVIII levels

Combined MARTHA patients(1)

Frequency

Frequency
Haplotypic FVIII
expected mean

[95%CI]
ses Controls Cases

1,542 N = 2,338 N = 1953

551 0.569 0.547 0.548 68.77 [66.27–71.26]

185 0.167 0.188 0.184 62.34 [58.03–66.64]

214 0.181 0.219 0.220 62.09 [56.35–67.83]

050 0.083 0.046 0.048 91.95 [92.98–100.9]
6 p(3) = 1.90 10-9 p(4) = 6.89 10-5

nalysis under the assumption of additive allele effects.
g a fixed-effect model.
alysis, adjusted for age, sex, ABO blood group and F5/F2 carriers mutations.
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There is still no consensus about the most efficiency
way to perform a genome-wide search for SNP x SNP
interaction. A plethora of statistical methods are applic-
able to the detection of such interactions eg [8,26-29]
and none of them could be considered as the panacea.
Comparing the performances of different methodologies
is of great importance but out of the scope of this
manuscript. We rather focused in the present work on
the application of a standard methodology, the logistic
regression model, that has been shown to be a valid
methodology for detecting interaction between SNPs
[8]. Different strategies can still be adopted within the
logistic regression framework. Some people advocate to
restrict the search for interaction to the set of most “sig-
nificant” SNPs observed in single locus analysis. How-
ever, in that case, which statistical threshold should be
used for selecting SNPs with significant marginal associ-
ations? Nevertheless, we further confined our search for
interaction to SNPs with statistical evidence for associ-
ation in univariate analysis as low as p < 10-3 or p < 0.05.
We did not identify pair-wise significant interaction that
were homogeneous between EOVT and MARTHA, and
that satisfied the relevant Bonferroni correction (data
not shown). Others suggest to use external biological
information to refine the research strategy. Pathway-
based analysis focusing only on the pairwise interac-
tions between candidate gene SNPs could be such a
strategy. By focusing only on SNPs mapping the VT
candidate genes listing in the Supplementary Table 1 in
[6], we did not detect any Bonferroni-corrected signifi-
cant interaction that replicate in the EOVT and MAR-
THA study (data not shown). Another possibility could
consist in assessing whether the most promising inter-
active effects could also be observed on quantitative
traits known to be associated with the disease. Doing
so, we observed that the rs9804128 and rs4784379
could interact to modulate both the risk of VT and the
variability of FVIII levels. The rs9804128 lies in the
proximal promoter of the IGFS21 gene and, according
to the SNAP database [21], it is not in strong LD (r2 >
0.8) with any other SNP. Conversely, the rs4784379 is
in strong LD with several SNPs, all located at least
100 kb away from the IRX3 locus. However, the ob-
served interaction could be considered as counterintu-
itive since the allele combination associated with
increased FVIII levels was found less frequent in cases
than in controls. This phenomenon could nevertheless
be observed in presence of a mortality bias when pa-
tients with high levels of FVIII levels are at a higher risk
of VT-associated mortality (eg. pulmonary embolism)
and then under-represented in the cases sample. Further
investigations are needed to replicate this association
that involved SNPs at genes on which very little is
known with respect to VT.
Conclusion
In conclusion, our work suggests that strong interactive
(~OR >2) phenomena between common SNPs are un-
likely to contribute much to the risk of the VT.

Consent
Written informed consent was obtained from the
patient for publication of this report and any accompany-
ing images.

Additional files

Additional file 1: Summary characteristics of the two studied GWAS
populations.

Additional file 2: Density of the minimal interactive Odds Ratio that
can be detected with a 80% power in the EOVT study. In green is
shown the density distribution for a statistical level of 10-4.In black is the
corresponding distribution for the genome-wide Bonferroni statistical
level of 1.69 10-12. The mode of these distributions were 1.84 and 2.83,
respectively. By symmetry on the logarithmic scale, only positive ORs
are shown.
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