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Abstract

Background: The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low
amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA
(wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.
We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with
gDNA derived from whole blood.

Methods: gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age
22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome
amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and
gDNA samples, all coding regions and adjacent intron regions of the genes SCN5A and KCNA5 were investigated.

Results: Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence
analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact
same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the
wgaDNA group.

Conclusions: The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high
resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an
alternative to whole blood in sequence analysis.

Background
The challenge to investigate the genetic basis of inher-
ited diseases requires large amount of DNA preferably
obtained from drawn blood samples. However, in some
cases drawn blood is not available. Genomic DNA
(gDNA) from dried blood spots (DBS) samples has pre-
viously been shown to be reliable for genetic testing [1],
but the amount of gDNA is limited and as such com-
prehensive investigations including new candidate gene
screening in these patients might be impossible. In
those situations, amplification of small amounts of
gDNA using whole-genome amplification (WGA) can

be beneficial. WGA is a method based on the multiple
displacement amplification technology [2]. The technol-
ogy replicates-using a DNA polymerase-up to 100 kb
without dissociating from the gDNA template. The poly-
merase moves along the DNA template strand displa-
cing the complementary strand. The displaced strand
then becomes a template for new replications. The
result is large quantities of wgaDNA replicated from
only a very small amount of gDNA. However, there is a
lack of evidence suggesting that whole-genome amplified
DNA (wgaDNA) applied to gDNA stored for many
years, for instance in the form of dried blood spots
(DBS) samples, can reliably be used in investigations for
mutations using high resolution melting curve
(HRMCA) and sequencing analysis. Several countries
store residual DBS samples from their neonatal
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screening programs for later research and potential clin-
ical purposes [3-10]. In Denmark, these samples are
stored in the Danish Neonatal Screening Biobank which
was established in 1982. This biobank contains nearly
two million DBS samples, collected routinely from per-
sons born in Denmark, covering >99% of all Danes born
after 1982 [3,11].
HRMCA is a method in which melting curves are

obtained when a gradual heat increase (between 60-98
degrees C) is applied to the PCR product. Alterations to
the sequence analyzed in the form of genetic variants
produce different melting curves compared to wild type.
We have previously shown that these DBS samples,

after WGA, can be used for single nucleotide poly-
morphism genotyping, including genome wide scanning
[12-14]. It remains to be proven, though, that wgaDNA
from DBS samples can be used as a reliable source of
DNA for sequence analysis in genetic workup for inher-
ited diseases.
In this study we validate whether DBS samples can be

used for mutations screening using HRMCA and
sequence analysis. We do this by comparing the
wgaDNA with the same patients gDNA obtained from a
drawn blood sample. The genes SCN5A located on
chromosome 3p21 and KCNA5 located on chromosome
12p13 were chosen for investigation because both are
interesting in the context of lone atrial fibrillation
[15,16].

Methods
Subjects
The study was performed on 10 patients with documen-
ted lone atrial fibrillation aged 19 to 28 years (mean age
22.3 years). Whole blood was obtained from each
patient at study inclusion. To be enrolled in this study,
the patients would furthermore have to have a DBS
sample collected at birth and stored at -24°C in the
Danish Neonatal Screening Biobank. The study con-
forms to the Helsinki Declaration and to local legisla-
tion. The study was approved by the local ethics
committee in Copenhagen (KF 01313322). Patients were
enrolled for genetic screening for their disease and have
all given informed consent.

DNA extraction and WGA
gDNA was purified from the blood samples using
QIAamp DNA Blood Mini Kit (Qiagen).
From the DBS samples, two 3.2-mm disks were

punched. DNA was extracted using an “in-house” tech-
nique based on Extract-N-amp Blood PCR Kit (Sigma-
Aldrich) and WGA was then performed in triplicates
by the multi-displacement amplification method using
the REPLI-g kit (Qiagen). The three samples were

subsequently pooled together. The method has pre-
viously been described in detail [14].
The concentration of the wgaDNA samples were mea-

sured using Quant-iT™PicoGreen® dsDNA Reagent
(Molecular Probes, Invitrogen) and were subsequently
adjusted to 20 ng/ul. The entire coding sequence
and splice junctions of SCN5A (NM_000335,
ENST00000438305), were bidirectionally sequenced with
intronic primers (primers and PCR conditions are avail-
able on request) using the GoTaq enzymatic kit (Pro-
mega). The investigator was blinded for the identity of
the wgaDNA samples and their corresponding gDNA
samples. All samples where screened employing HRMCA
using the Light Scanner technology (Idaho technology).
Direct sequencing was then performed on all samples
using Big Dye chemistry (Applied Biosystems) on a DNA
analyzer 3730 (Applied Biosystems).
Each patient was investigated in 40 amplicons, corre-

sponding to more than 10 500 basepairs.

Results
We identified 85 (21%) altered melting curves in the
10 wgaDNA samples and 81 (20%) altered melting
curves in the 10 gDNA samples.
Sequencing analysis of all amplicons identified a total

of 31 variants in the wgaDNA samples, of which 29
were heterozygous and two homozygous. Six of the
identified variants led to a change in the amino acid
sequence, three of which were the previously reported
variant H558R (rs1805124) in SCN5A [17]. A rare
amino acid change R340Q in SCN5A has only been
described once before in a Finnish population of LQTS
patients [18]. Of the 2 variants identified in KCNA5 one
(R578K) is a previously described rare variant [19], while
the other one (T155C) to our knowledge has not been
reported before.
The same 31 variants were found in the exact same

pattern of samples in the gDNA group. Analyzing the
sequencing results there was no false positives or nega-
tives in the wgaDNA group. In addition, the variants
detected in wgaDNA behaved similar to the gDNA in
respect to spike alterations in the sequencing analysis.
Examples of melting curves and sequencing results are
provided in Figure 1.
All variants were found to have altered melting curves

in both gDNA and wgaDNA samples including the
homozygous variants. Some of the amplicons, though,
contained variants that were so abundant that they were
not reliable for HRMCA in our small sample size (i.e.
amplicon 33 and 35). False positive rate for HRMCA on
wgaDNA was 64% (54 of 85 altered melting curves) and
for gDNA 62% (50 of 81 altered melting curves). Results
are summarized in Table 1.
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Discussion
This study demonstrates that tri-amplified wgaDNA
made from gDNA extracted from two 3.2-mm disks
punched from DBS samples stored for up to 28 years, is
well suited for both HRMCA as well as sequencing ana-
lysis. The wgaDNA from DBS samples completely
resembles and reproduces results from gDNA.
The overall goals implementing HRMCA are to use it

as a screening tool for PCR product in the samples and
to pinpoint altered curves suggestive of variants. The
latter obviously requires that at least all variants are hav-
ing altered curves compared with wild type, but it is also
beneficial if the false positive rate is not too high
because it limits the samples that subsequently needs to
be sequenced-a step that is cost and time expensive.
We found a high false positive rate for both gDNA

and wgaDNA when applying the melting curve analysis.
This could be due to a conservative approach when

analyzing the melting curves. Another reason, though,
might be that our software setup for sequencing analysis
examined only 50 basepairs upstream and downstream
of every exon, even though our primers covered a larger
part of the intronic sequences. Therefore some of the
false positive variants seen on HRMCA might in fact be
true variants positioned more than 50 basepairs away
from the exon examined.
Previously it has been shown that wgaDNA might

produce slightly greater numbers of false positives on
HRMCA compared to gDNA [20]. However, in our
study there were no significant difference between
wgaDNA and gDNA (p = 0.74). It should also be noted,
that some amplicons harbours very common variants
which make HRMCA difficult.
Previous reports have documented that HRMCA irre-

spective to gDNA or wgaDNA lacks the possibility to
safely identify homozygous variants [20,21]. In the

Figure 1 Comparison of high resolution melting curve analysis (panel A) and sequence analysis (panel B) of wgaDNA and gDNA. In
panel A is shown melting curves for amplicon 2. In panel B is shown an example of one of the two corresponding variants which both was a
heterozygous G->A substitution in position 87 that did not result in any aminoacid change. It is noteworthy that the spike alteration due to the
aminoacid change in wgaDNA completely resembles that of gDNA. This was the case for all variants in this study.
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Table 1 Comparison of high resolution melting curve analysis and sequencing results for wgaDNA and gDNA samples

Genes and Amplicons Variants on Melting
Curve Analysis
(10 patients in each
group)

Sequence analysis
results
(10 patients in each
group)

SCN5A gDNA wgaDNA gDNA wgaDNA Type Result Additional information

1 1 5 Wild Type Wild Type

2 2 2 2 2 G->A pos 87, no aa change

3 1 1 Wild Type Wild Type

4 Wild Type 1 Wild Type Wild Type

5 1 Wild Type Wild Type Wild Type

6 2 Wild Type Wild Type Wild Type

7 1 Wild Type Wild Type Wild Type

8 Wild Type Wild Type Wild Type Wild Type

9 3 3 1 1 G->A R340Q Rare variant

10 5 6 3 3 C->A Intronic pos -3

11 6 4 3 3 G->A Intronic pos -24

12 7 6 3 3 A->G H556R Known variant

13 3 3 Wild Type Wild Type

14 Wild Type 4 Wild Type Wild Type

15 3 4 Wild Type Wild Type

16 3 3 Wild Type Wild Type

17 Wild Type Wild Type Wild Type Wild Type

18 Wild Type Wild Type Wild Type Wild Type

19 Wild Type 1 Wild Type Wild Type

20 6 4 3 3 G->A pos 1061, no aa change

21 Wild Type Wild Type Wild Type Wild Type

22 1 1 Wild Type Wild Type

23 Wild Type Wild Type Wild Type Wild Type

24 Wild Type Wild Type Wild Type Wild Type

25 Wild Type Wild Type Wild Type Wild Type

26 3 4 Wild Type Wild Type

27 1 1 Wild Type Wild Type

28 2 2 Wild Type Wild Type

29 2 2 Wild Type Wild Type

30 Wild Type Wild Type Wild Type Wild Type

31 1 1 Wild Type Wild Type

32 Wild Type Wild Type Wild Type Wild Type

33 7 7 7 7 T->C pos 5457, no aa change 6 heterozygous, 1 homozygous

34 Wild Type Wild Type Wild Type Wild Type

35 7 7 7 7 A->G Intronic 6 heterozygous, 1 homozygous

KCNA5 gDNA wgaDNA gDNA wgaDNA Type Result Additional information

36 1 1 1 1 C->T pos 381, no aa change Same patient harbouring two variants

A->G T155C Same patient harbouring two variants

37 1 1 Wild Type Wild Type

38 Wild Type Wild Type Wild Type Wild Type

39 1 1 1 1 G->A R578K Rare variant

40 10 10 Wild Type Wild Type

Total 81 85 31 31
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present study, both homozygous variants had altered
curves, but of note they both were in amplicons con-
taining a frequent variant, and therefore might not be
suitable for screening using HRMCA.
One concern previously addressed is whether WGA of

a low concentrated sample can give rise to an unequal
amplification of alleles, and thereby possible loss of het-
erozygosity. A previous study found discordant results
in this regards to be around 3% [20]. Allele drop-out,
however was not observed in our study. We believe that
the tri-amplification approach might be a contributing
factor in this regard, although we can not exclude a loss
of heterozygosity in wild type alleles.
Demonstrating a 100% concordance with genotyping

data obtained by the gDNA samples, we suggest that
WGA in triplicates can safely and reliably be used on
DBS samples.
In the clinical setting wgaDNA from DBS samples can

become very important for instance in cases of other-
wise unexplained deaths where material suitable for
DNA testing is otherwise not retrievable. A genetic
workup in these cases might confirm or reveal inherited
cardiac diseases such as Long QT syndrome and Bru-
gada syndrome where sudden cardiac death may be the
initial symptom and thereby help to identify patients at
risk in the family [15,22].

Conclusion
We conclude that wgaDNA obtained from stored DBS
samples can safely be used in HRMCA. Furthermore it
is reliable for sequence analysis and exactly reproduces
results from gDNA extracted from drawn blood
samples.
This has a potential of great impact since many coun-

tries store residual newborn DBS samples for later
research purposes. In other countries as well as in
Denmark, where a systematic collection of all DBS sam-
ples from newborns has been in place for almost 30
years, this study now opens for the possibility of
sequence analysis in cases where material suitable for
DNA screening is otherwise not retrievable.

Abbreviations
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melting curve analysis.
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