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Abstract
Background: Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited
colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic
mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in
APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of
APC and MUTYH mutations among FAP families from two Spanish populations.

Methods: Eighty-two unrelated patients with classical or attenuated FAP were screened for APC
germline mutations. MUTYH analysis was then conducted in those APC-negative families and in 9
additional patients from a previous study. Direct sequencing, SSCP analysis and TaqMan genotyping
were used to identify point and frameshift mutations, meanwhile large rearrangements in the APC
gene were screened by multiplex ligation-dependent probe amplification (MLPA).

Results: APC germline mutations were found in 39% of the patients and, despite the great number
of genetic variants described so far in this gene, seven new mutations were identified. The two
hotspots at codons 1061 and 1309 of the APC gene accounted for 9,4% of the APC-positive families,
although they were underrepresented in Galician samples. The deletion at codon 1061 was not
found in 19 APC-positive Galician patients but represented 23% of the Catalonian positive families
(p = 0,058). The same trend was observed at codon 1309, even though statistical analysis showed
no significance between populations. Twenty-four percent of the APC-negative patients carried
biallelic MUTYH germline mutations, and showed an attenuated polyposis phenotype generally
without extracolonic manifestations. New genetic variants were found, as well as the two hotspots
already reported (p.Tyr165Cys and p.Gly382Asp).
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Conclusion: The results we present indicate that in Galician patients the frequency of the hotspot
at codon 1061 in APC differs significantly from the Catalonian and also other Caucasian populations.
Similar results had already been obtained in a previous study and could be due to the genetic
isolation of the Galician population. MUTYH analysis is also recommended for all APC-negative
families, even if a recessive inheritance is not confirmed.

Background
Familial adenomatous polyposis (FAP; OMIM#175100)
is a rare autosomal dominant colorectal cancer predispo-
sition syndrome, characterised by the presence of hun-
dreds to thousands of adenomatous polyps in the colon
and rectum from an early age. In the absence of prophy-
lactic surgery, colorectal cancer (CRC) is the inevitable
consequence of FAP. Extracolonic manifestations such as
osteomas, congenital hypertrophy of the retinal pigment
epithelium (CHRPE), desmoid tumors, sebaceous cysts,
hepatoblastoma, upper gastrointestinal tumors or thyroid
carcinoma are also associated with FAP [1]. Attenuated
FAP (AFAP) is a clinical variant characterised by the pres-
ence of fewer than 100 colonic polyps, and often has a
later age of onset of polyposis and CRC [2].

The genetic basis of most cases of FAP is a germline muta-
tion of the adenomatous polyposis coli (APC) gene
(5q21), which encodes a tumor suppressor protein
involved in regulation of cell proliferation and chromo-
some segregation [3]. About 90% of the germline muta-
tions in FAP result in truncation of the APC protein and
are mainly located within exon 15 [4]. In AFAP, germline
mutations have been generally detected either in exon 9 or
the 5' and 3' ends of the gene [5].

It is known that APC germline mutations are not present
in approximately 10–30% of FAP patients and in up to
90% of AFAP patients [6]. Recently, patients with multiple
colorectal adenomas and also patients with FAP but with-
out detectable germline APC mutations have been found
to carry biallelic mutations in the base-excision-repair
gene MUTYH (MYH) [7]. This base excision repair (BER)
pathway is necessary to repair DNA damage caused by
reactive oxygen species. The DNA glycosylase MUTYH
removes adenines from mispairs with 8-oxoguanine that
occur during the replication of oxidized DNA. Failure to
correct these mispairs consequently leads to G:C→T:A
tranversion mutations in tumors that resulted in the dis-
covery of MUTYH-associated polyposis (MAP), which
shows an autosomal recessive inheritance pattern [8]. Two
mutational hotspots have been so far identified in the
MUTYH gene: p.Tyr165Cys and p.Gly382Asp, accounting
for approximately 78% of the mutations identified in
affected Caucasians [9].

In this study, we examined the mutational spectrum of the
APC gene in patients with polyposis from two Spanish
populations, and also the contribution of MUTYH germ-
line mutations in those APC-negative patients.

Methods
Patients and DNA isolation
The sample studied consisted of 82 unrelated cases with
FAP (>100 colorectal adenomas) or AFAP (5–100 colorec-
tal adenomas). All the patients were included in the study
based on colonoscopic findings and/or positive family
history. Forty-eight samples were submitted for mutation
analysis at the Galician Public Foundation of Genomic
Medicine (FPGMX) from health centers across Galicia,
and 34 were attended in the at-risk clinic for CRC of the
Hospital Clinic in Barcelona. Written informed consent
was obtained for each patient before mutation analysis,
according to the protocols approved by the ethics review
boards of the Hospitals and in compliance with the Hel-
sinki declaration.

All patients were screened for APC germline mutations,
and when negative, MUTYH was analysed. MUTYH was
also studied in 9 APC-negative families included in a pre-
vious article [10].

Clinical features for patients with detected mutations,
including age of onset, number of adenomas, colorectal
cancer diagnosis, extracolonic diseases and family history,
if present, are listed in Tables 1 (APC) [5,10-20] and 2
(MUTYH) [7,8,21,22].

Genomic DNA from Galician and Catalonian samples
was obtained from peripheral blood using the Wizard
DNA extraction kit (Promega, Madison, WI), and the
QIAamp DNA Blood Mini Kits (Qiagen, Hilden, Ger-
many) respectively. Protocols were performed according
to the manufacturer's instructions.

Analysis of the APC gene
Sequence variants
Exonic and intronic splice-site defining regions were
amplified for the APC gene. PCR conditions for exon 15
had already been described [10], whereas for exons 1–14,
new primers were designed using the Primer3 software
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Table 1: Phenotypic features and germline mutations identified in APC-positive patients.

Patient ID Onset age Number of Adenomas CRC ED Family history 
(age at diagnosis)

Mutation Exon Ref

GAL-27 42 >100 No No Father: CRC(36) 
Grandmother: CRC(60)

c.(?_30)_(*220_?)del Whole allele [11]

GAL-16 23 100 No DT OST NA c.(?_30)_(*220_?)del Whole allele [11]

GAL-14 20 >100 No ? No c. 1-?_8532+?del 1 to 15 [12]

GAL-07 50 15 No No Affected mother (?) c.147-150delACAA 
(p.Lys49AsnfsX20)

2 This study

GAL-15 33 >100 No ? No c.423-?_531+?del 4 [5]

GAL-11 41 >100 Yes No Father: CRC (?) c.646C>T (p.Arg216X) 6 [13]

GAL-26 15 >100 No No Father: FAP+CRC (47) c.646 C>T (p.Arg216X) 6 [13]

GAL-09 33 12 No No No c.994C>T (p.Arg332X) 9 [5]

GAL-10 64 50 Yes No Mother: CRC (68) Aunt: 
CRC (60)

c.1072C>T 
(p.Gln358X)

9 [14]

GAL-19 NA 20–50 No No Mother: CRC (46) c.1402 G>T 
(p.Glu468X)

10 This study

GAL-13 20 >100 Yes No No c.1620_1621dupA 
(p.Gln541ThrfsX19)

12 [15]

GAL-18 33 >50 No No Father: CRC (42) c.1682dupA 
(p.Thr562AsnfsX19)

13 [10]

GAL-02 30 0 No PC No c.1756 A>T 
(p.Lys586X)

14 [16]

GAL-01 23 <100 No No Brother: FAP (20s) c.2413C>T 
(p.Arg805X)

15 [17]

GAL-17 41 100 Yes OST Father CRC (45), Sister 
CRC (34)

c.2900delT 
(p.Val967AlafsX13)

15 This study

GAL-12 34 <100 No No Father: CRC (40s) 
Uncle: CRC (40s) 

Grandfather: CRC(40s)

c.3467_3470delAAGA 
(p.Glu1156GlyfsX8)

15 [18]

GAL-24 52 >100 No CHRPE No c.3927_3931delAAAGA 
(p.Glu1309AspfsX4)

15 [18]

GAL-04 60 >100 Yes Others No c.4033G>T 
(p.Glu1345X)

15 [19]

GAL-25 43 >100 Yes No NA c.4219-4220delAG 
p.Ser1407XfsX1

15 This study

CAT-12 21 >100 No No Mother: FAP+ CRC (49) 
Sister: FAP (31)

c.(?_30)_(*220_?)del Whole allele [11]
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[23] in order to cover larger intronic regions [see Addi-
tional file 1].

Galician samples were analysed by direct DNA sequencing
at the FPGMX. For the Catalonian samples, single strand
conformational polymorphism (SSCP) analysis was per-
formed at Hospital Clinic as an initial screening, as
described [24]. Amplification products larger than 350 bp
were previously digested with a suitable restriction
enzyme. Any fragment showing a mobility shift was
sequenced in order to identify the variant. Sequencing was
performed in forward and reverse orientations using the
BigDye terminator v.3.1. cycle sequencing kit (Applied
Biosystems, Foster City, CA).

Genomic rearrangements
Large genomic rearrangements of the APC gene were eval-
uated with the APC multiplex ligation-dependent probe
amplification (MLPA) kit [25], and performed according
to the supplied protocol (SALSA MLPA KIT P043 APC,
MRC-Holland, Amsterdam, The Netherlands). The ampli-
cons were analysed in an ABI 3730 sequencer using Gen-
eMapper v3.7 software (Applied Biosystems, Foster City,
CA, USA). Peak heights of each fragment were compared
to those of a control sample, and deletions or duplications
were suspected when peak height differed by over 30%.
Control DNA samples with known genomic rearrange-
ments in APC were included in each batch of experiments.
Positive results of large rearrangements were repeated in
an independent assay and subsequently confirmed by
other methods (FISH, cDNA analysis).

CAT-13 20 20–50 No No Father: FAP (?) Brother: 
FAP (?)

c.423-?_531+?del 4 [5]

CAT-01 46 100 Yes No Brother: CRC+FAP(53) 
Brother: CRC+FAP(59)

c.994C>T (p.Arg332X) 9 [5]

CAT-02 32 >100 No DP No c.2934_2935delAA 
(p.Gln978HisfsX6)

15 This study

CAT-03 38 40–60 No DT Father: CRC (46) 
Brother: FAP

c.3183_3187delACAAA 
(p.Lys1061LysfsX2)

15 [18]

CAT-04 20 >100 No No Mother: FAP + CRC (?) 
Cousin: CRC (52)

c.3183_3187delACAAA 
(p.Lys1061LysfsX2)

15 [18]

CAT-05 39 >100 No DT Sister: FAP (41) c.3183_3187delACAAA 
(p.Lys1061LysfsX2)

15 [18]

CAT-06 38 >100 Yes No Brother: FAP Father: 
FAP + CRC (?)

c.3329C>A 
(p.Ser1110X)

15 This study

CAT-07 NA NA NA NA NA c.3329C>A 
(p.Ser1110X)

15 This study

CAT-08 27 >100 No No Brother: FAP (29) 
Father: FAP (41) 

Grandmother: FAP(30)

c.3531delT 
(p.Ile1177MetfsX5)

15 This study

CAT-09 NA NA NA DP NA c.3631_3632delAT 
(p.Met1211ValfsX5)

15 [20]

CAT-10 17 >100 No FGP Father: FAP (39) Uncle: 
FAP + CRC (?)

c.3927_3931delAAAGA 
(p.Glu1309AspfsX4)

15 [18]

CAT-11 32 >100 No FGP Father: FAP (39)
Uncle FAP + CRC(63).
Aunt: FAP+ CRC(55)

Grandmother: 
FAP+CRC(39)

c.3927_3931delAAAGA 
(p.Glu1309AspfsX4)

15 [18]

ED: extracolonic disease; DT: desmoid tumor; OST: osteomas; NA: not available; PC: papillary carcinoma; CHRPE: congenital hypertrophy of the 
retinal pigmented epitelium; Others: Ovarian tumor and suprarenal adenoma; DP: duodenal polyps; FGP: fundic gland polyps.

Table 1: Phenotypic features and germline mutations identified in APC-positive patients. (Continued)
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Table 2: Phenotypic characteristics and germlime mutations identified in biallelic MUTYH carriers.

Patient ID Onset age Number of adenomas CRC ED Family History 
(age at diagnosis)

MUTYH Ref.

1st Mutation 2nd mutation

GAL-08 43 25–30 Yes No No c.494A>G 
(p.Tyr165Cys)

c.494A>G 
(p.Tyr165Cys)

[7]

GAL-21 52 <100 No No No c.494A>G 
(p.Tyr165Cys)

c.1145 G>A 
(p.Gly382Asp)

[7]

GAL-22 NA 40–60 No No Two siblings and 
mother: CRC (50s)

c.494A>G 
(p.Tyr165Cys)

c.1145 G>A 
(p.Gly382Asp)

[7]

GAL-05 58 <100 Yes No NA c.494A>G 
(p.Tyr165Cys)

c.1145 G>A 
(p.Gly382Asp)

[7]

GAL-06 NA 40–100 No No Sister: AFAP (?) c.494A>G 
(p.Tyr165Cys)

c.1145 G>A 
(p.Gly382Asp)

[7]

GAL-20 45 <100 No No Two siblings: 
AFAP+CRC (?)

c.1131 C>T 
(p.Gln377X)

c.1145 G>A 
(p.Gly382Asp)

[7,21]

GAL-03 44 31–100 Yes No No c.1145 G>A 
(p.Gly382Asp)

c.1145 G>A 
(p.Gly382Asp)

[7]

GAL-23 62 >30 Yes No No c.1186_1187insGG 
p.Glu396GlyfsX43

c.1186_1187insGG 
p.Glu396GlyfsX43

[22]

CAT-15 44 5 Yes No Mother: BC(66) 
Brother:2 CRC (46)

c.494A>G 
(p.Tyr165Cys)

c.1103delC 
(p.Ala369AlafsX26)

[7,8]

CAT-14 38 15–30 No No Father: CRC (?) c.494A>G 
(p.Tyr165Cys)

c.1145 G>A 
(p.Gly382Asp)

[7]

CAT-17 60 >20 Yes No NA c.1145G>A 
(p.Gly382Asp)

c.1145G>A 
(p.Gly382Asp)

[7]

CAT-16 45 40–50 No No Father: CRC (40) c.1145G>A 
(p.Gly382Asp)

c.1145G>A 
(p.Gly382Asp)

[7]

CAT-18 45 70 Yes No No c.1186_1187insGG 
(p.Glu396GlyfsX43)

c.1186_1187insGG 
(p.Glu396GlyfsX43)

[22]

CAT-19 69 0 Yes BC (59) Cousin: CRC (40) c.1186_1187insGG 
p.Glu396GlyfsX43

c.1186_1187insGG 
p.Glu396GlyfsX43

[22]

ED: Extracolonic disease; BC: Breast cancer; NA: not available.
To allow comparison of our results, we used the MUTYH sequence used by previous authors (GenBank accession number: U63329) instead of the 
actual reference sequence (GenBank accession number: NM_012222), which has 11 additional codons in exon 3.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U63329
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_012222
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APC FISH
Fluorescent in situ hybridization (FISH) analysis was per-
formed with RP11-3B10 and RP11-619D06 clones map-
ping in 5q21-q22. BAC clones were purchased from the
BAC/PAC Resources of the Children's Hospital Oakland
Research Institute (CHORI, Oakland, CA). Equal amounts
of BAC DNA (200 ng) were labelled with Spectrum
Orange (RP11-3B10) and Spectrum Green (RP11-
619D06) by a standard nick-translation (Vysis, Downers
Grove, IL, USA). This dual color probe was used to hybrid-
ize preparations of fixed cell nuclei and metaphases.
Slides were visualized under an epi?uorescence micro-
scope (Leica DMRXA). Images were captured by using a
COHU camera and analysed with the Cytovision Ultra
Workstation (Applied Imaging, Sunderland, UK).

RT-PCR
mRNA was isolated from blood using RNeasy® Mini kit
(Qiagen, Hilden, Germany). Synthesis of complementary
DNA (cDNA) was performed with SuperScript™ II Reverse
Transcriptase (Invitrogen, Carlsbad, USA). cDNA was
then amplified using primers located in the adjacent
exons to those regions potentially deleted. A positive
cDNA control was included in every PCR. Amplification
products were sequenced in an ABI3730 analyser.

Analysis of the MUTYH gene
For every patient without detectable pathogenic muta-
tions in APC, all MUTYH exons and their adjacent
intronic splice sites were amplified using primers
designed with the Primer3 software [23] [see Additional
file 2].

Galician samples were analysed at the FPGMX center by
sequencing each amplification fragment, as described
above for the APC gene. Real-time PCR using Taqman
probes, and SSCP analysis were performed for Catalonian
samples at the Hospital Clinic. TaqMan genotyping
included the analysis of the two most common mutations
found to date in the MUTYH gene: p.Tyr165Cys and
p.Gly382Asp, as well as the two rare mutations
c.1103delC and c.1186_1187insGG identified in our pre-
vious study [26]. This technique is based on allelic dis-
crimination using allele-specific probes resolved on a
7300 Real Time PCR System (Applied Biosystems, Foster
City, CA).

Mutation nomenclature
All mutations were described following the guidelines
proposed by the Human Genome Sequence Variation
(HGSV) site and were referred to the cDNA sequences of
APC (NM_000038) and MUTYH (U63329). Furthermore,
all mutations were confirmed in two independent DNA
extractions.

Variants of Unknown Significance (VUS)
We examined 500 chromosomes from control individuals
with no personal or family history of colorectal cancer, in
order to estimate the frequency of VUS. Analysis was car-
ried out by direct DNA sequencing (see above).

Polyphen software was used to test the potential role of
missense variants. This prediction program is based on
observed substitutions of the residues in homologous
proteins [27].

Statistical analyses
Ji-squared statistics with Fisher's correction were used to
test for differences in APC and MUTYH mutation frequen-
cies between the Galician and the Catalonian popula-
tions. Comparisons were also made for mutation
frequencies at codons 1061 and 1309 of the APC gene. All
statistics were estimated with the SPSS statistical software
package (SPSS Inc., Chicago IL).

Results and Discussion
APC mutations
In this study, germline mutations in APC were found in
39% (32 out of 82) of the Spanish patients with FAP.
Frameshift and nonsense mutations were the most fre-
quently identified, and despite the great number of
genetic variants described to date in the APC gene, seven
new pathogenic mutations and two new VUS were
reported. Clinical features displayed by APC-positive
patients are shown on Table 1.

Five new frameshift mutations were identified:
c.147_150delACAA
(p.Lys49AsnfsX20),c.2900delT(p.Val967AlafsX13),c.2934
_2935delAA(p.Gln978HisfsX6),c.3531delT(Ile1177Metfs
X5) and c.4219_4220delAG (p.Ser1407XfsX1) in patients
GAL-07, GAL-17, CAT-02, CAT-08 and GAL-25, respec-
tively. All of these mutations were deletions of few nucle-
otides, that give rise to premature stop codons (X) which
would lead to truncated APC proteins. We also identified
two additional nonsense mutations that generate prema-
ture stop codons: c.1402 G>T (p.Glu468X) in patient
GAL-19, and c.3329C>A (p.Ser1110X) in two unrelated
patients (CAT-06 and CAT-07).

The two new VUS: c.3165A>G (p.Ile1055Met) and
c.5357G>C (p.Arg1786Thr), were found in GAL-47 and
GAL-35. Both patients displayed an attenuated FAP phe-
notype with an onset at around forty. These variants were
not detected in 500 chromosomes from a healthy control
population. However, their absence from the control
group cannot be taken as prove of a deleterious effect. In
silico studies using Polyphen revealed the p.Arg1786Thr as
"possibly damaging", while the p.Ile1055Met was
reported as "benign". In these families it was not possible
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to study the co-segregation with the disease, so further
functional studies are necessary to consider them deleteri-
ous.

Large genomic deletions were found in 11% (6/56) of the
families that tested APC mutation-negative by conven-
tional techniques. This frequency is consistent with pub-
lished data that comprise a range between 8–12% for such
rearrangements [11,12,28]. Three different deletions were
detected in 6 unrelated families: two exon 4 deletions
(CAT-13 and GAL-15), an exon 1–15 deletion (GAL-14),
and 3 whole-gene deletions (including the promoter)
(CAT-12, GAL-27 and GAL-16). All of them were further
confirmed by either cDNA studies (Figure 1) or FISH anal-
ysis (Figure 2).

Carriers of whole allelic deletions generally displayed a
severe polyposis phenotype with an early onset of symp-
toms, as previously described [11]. A correlation between
site of mutation and clinical phenotype was also observed
for six of the seven new mutations identified. Mutations
occurring at the beginning and middle of exon 15 were

generally associated with a more severe phenotype than
those located at the 5' and 3' ends of the gene, which is
consistent with other studies [29]. Although mutations in
exon 10 would then be associated with FAP, p.Glu468X
was found in a patient classified as AFAP based on
number of polyps (GAL-19) (Table 1).

Phenotypic differences about number of adenomas and
extracolonic disease were observed in unrelated probands
carrying the p.Lys1061LysfsX2 mutation (CAT-03 and
CAT-04) and the whole gene deletions (CAT-12 and GAL-
16) (Table 1). This phenotypic heterogeneity suggests that
either modifier genes, epigenetic mechanisms or environ-
mental factors could modulate the FAP phenotype. There
is good evidence from humans, and particularly from
mouse models, of the involvement of modifier genes that
influence the severity of FAP. It is known that same sex
siblings in their early twenties often show phenotypic dif-
ferences which cannot be easily explained except by the
action of modifier genes [30]. Despite those findings, fur-
ther clinical information and an accurate follow-up of
patients is necessary to confirm our results.

cDNA analysis of the APC exon 4 deletion confirming the results obtained by MLPAFigure 1
cDNA analysis of the APC exon 4 deletion confirming the results obtained by MLPA. A. forward reference 
sequence; B. forward sequence with exon 4 deletion; C. reverse reference sequence; D. reverse sequence with exon 4 dele-
tion; E. Nucleotidic and aminoacidic sequences showing the effect of the exon 4 deletion, which results in a frameshift that cre-
ates a stop codon at residue 442.
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The two hotspots at codons 1061 and 1309 of the APC
gene accounted in this study for 9.4% of the APC-positive
families. However, they were reported mainly in Catalo-
nian families. Mutation at codon 1061 was detected in 3
(CAT-03, CAT-04 and CAT-05) out of 13 Catalonian pos-
itive families (23%), but was not found in 19 APC-posi-
tiveGalician families. A similar trend was observed for the
deletion at codon 1309: 15% (2 out of 13, CAT-10 and
CAT-11) for Catalonians vs 5,2% (1 out of 19, GAL-24) for
Galician patients. Therefore, we performed statistical
analyses in order to test whether the Galician population
had a significantly different mutation frequency at these
codons. Ji-squared tests yielded significance for the 1061
mutation (p = 0,058) but not for the 1309 variant (p =
0,356).

Although different mutation screening methods were
used to study these two populations, the possibility that
this fact could have caused the different spectra observed
would be very small. Firstly, the mutation frequency in
both populations was similar (40% for Galicia and 38%
for Catalonia, p = 0.888). Besides, Galician samples were
directly sequenced, which was the most sensitive of the
techniques used.

Similar results had already been observed in a previous
study where 15 unrelated Galician patients were analysed,
but in that study it was not possible to establish whether
the inability to detect the recurrent mutations at codons
1061 and 1309 actually reflected an underrepresentation
of these genetic variations in this population, or was sim-
ply due to a sampling bias [10]. Furthermore, when we
considered all the data available from the Galician FAP
patients altogether (the 19 APC-positive families from this
study plus the 6 from our previous one [10]), the frequen-
cies observed were 4% (1/25 APC-positive) for the 1309
deletion, and still 0% for the deletion at codon 1061,
which is certainly quite remarkable. Thus, we recalculated
the Ji-squared test for the 1309 mutation and a trend
towards the underrepresentation of this variant was
indeed observed (p = 0,265).

Although there is plenty of evidence that the mutational
spectrum of the APC gene varies in different populations,
these two hotspots are thoroughly reported worldwide.
They represent around 8% and 20% of the APC-positive
families, and the 5 bp deletion at codon 1309 is reported
as the most common germline mutation [31,32]. Interest-
ingly, a frequency range for this deletion in different coun-
tries has also been described: a high rate in Japan (14%),

Whole APC gene deletion detected by MLPA and FISH analysisFigure 2
Whole APC gene deletion detected by MLPA and FISH analysis. A. Electropherograms of MLPA products showing a 
normal control and a deletion of the whole APC gene. B. FISH studies on metaphase spreads with clones RP11-3B10 (red 
probe) and RP11-619D06 (green probe) that map within the deletion, on the patient and a healthy sister. C. Physical mapping 
position, according to the hg17 assembly of the UCSC http://genome.ucsc.edu/cgi-bin/hgGateway of clones mapping the 5q21-
22 region.
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a moderate frequency in most European populations (5–
6%), and no 1309 deletions detected in Australia (0% out
of 27 APC-positive families) [33]. It has also been recently
reported that the frequency of the deletion at codon 1061
in 46 Czech and Slovak APC-positive families was lower
than the expected (3%) [34]. The variation in the distribu-
tion of these hotspots could presumably be caused by an
ascertainment bias, but in isolated populations it could as
well be explained by a founder effect. For instance, in the
Balearic Islands, where the hotspot at codon 1061 is over-
represented (50%), the haplotype analysis of the families
sharing this deletion was consistent with the presence of a
founder effect [35]. The recurrence of these two mutations
has been linked to the molecular properties of the DNA
region around codons 1061 and 1309, rather than with
specific haplotypes. These two are located within a short
hypermutable polyA repeat that may associate with an
increased probability of DNA polymerase slippage during
DNA replication, leading to an overrepresentation of dele-
tions. The high incidence of the 1309 deletion among de
novo cases, and the fact that this alteration was found to
segregate with different haplotypes associated with the
disease supports this hypothesis [33].

It is known that gene diversity in the Galician population
is generally lower than in other European populations, as
a result of its relative isolation from the rest of the Iberian
Peninsula and the high emigration rates during the last
two centuries [36,37]. These genetic features would have
possibly caused the selection of not yet identified allelic
variants in DNA repair genes. Hypothetically, those vari-
ants would repair more efficiently the DNA polymerase
slippage caused by the repetitive sequences around
codons 1061 and 1309 during replication. Therefore,
lower frequencies for these two APC hotspots should be
observed. Such founder effects have already been
observed in this population for some genetic diseases,
including BRCA1 in familial breast cancer [38].

MUTYH mutations
Biallelic germline mutations in MUTYH were found in
24% of the APC-negative patients, i.e., 14/59 (fifty from
this study plus 9 from the previous one [10]). This data is
consistent with previous results [39,40]. Differences
between these populations were not significant (p =
0.517).

Table 2 shows that the two most frequent mutations
reported to date (p.Tyr165Cys and p.Gly382Asp) were
detected in quite a number of cases, the frequency of these
alleles being 71%. This observation is comparable to what
has been described in the literature [9,41]. Among the
other mutations found, the c.1186_1187insGG accounted
for 21% of the mutant alleles reported. This mutation was

previously reported in Portuguese families with a similar
frequency [22].

Biallelic MUTYH carriers displayed an attenuated polypo-
sis phenotype without extracolonic manifestations, with
the exception of patient CAT-19 who showed breast can-
cer at 59 years and CRC at 69 (Table 2). It is noteworthy
that the BRCA1 and BRCA2 tumor suppressor proteins
participate in the base excision repair of 8-oxo-7,8-dihy-
droguanine (8-oxoG) lesions [42]. Accordingly, loss of
BER function due to biallelic MUTYH mutations may
underlie breast cancer risk. In Dutch MAP patients, breast
cancer occurred in 18% of females, significantly more
than the expected from national statistics. This observed
increased breast cancer risk should be thoroughly investi-
gated [21].

The median age at diagnosis of CRC in MAP families was
51,5 years (ranging from 43 to 69) (Table 2). In contrast,
classical FAP patients showed a CRC onset 10 years earlier
(median 41, ranging from 20 to 46) (Table 1). As previ-
ously reported [8], it appears that disease symptoms in
MAP are not as severe as those observed in APC- driven
FAP, and that they resemble an attenuated polyposis phe-
notype. However, patients GAL-08, CAT-15, GAL-03 and
CAT-18 presented ambiguous clinical manifestations,
with a display of CRC at around their forties, which is
more likely a feature of FAP, but a number of polyps and
an onset typical of the attenuated phenotype. Hence, we
have thought it appropriate to classify them as AFAP. We
realise that classification of such patients is difficult, since
it is well-known there is a lack of agreement concerning
the exact diagnostic criteria that should be used to classify
attenuated polyposis [43].

As expected, most of the bilallelic MUTYH carriers were
found in families with an autosomal recessive model of
inheritance, or in cases with apparent sporadic presenta-
tion. However, we identified three patients (CAT-14, GAL-
22 and CAT-16) with a family history of vertical transmis-
sion of CRC; similar results had already been described
[44].

Biallelic MUTYH mutations have been consistently linked
to higher CRC susceptibility. However, the risk for
monoallelic MUTYH carriers remains controversial. Bala-
guer et al. [26] used a meta-analysis of published case-con-
trol studies and concluded that monoallelic MUTYH
carriers were not at increased risk for CRC, although an
effect of bordeline statistical significance was observed for
p.Tyr165Cys. In the present study, monoallelic changes
with predicted functional relevance (p.Tyr165Cys,
p.Gly382Asp, p.Val232Phe) were found in 3/45 patients,
and accounted for 6.7% of cases. Nevertheless, they were
not included as positive within the overall data, even
Page 9 of 12
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though the p.Val232Phe was recently shown to reduce
glycosylase activity [45].

Five new VUS were identified: c.-56 G>C, c.39 C>T
(p.Ala13Ala), c.269A>G (p.Tyr90Cys), c.508C>T
(p.Arg170Trp) and c.762 G>A (p.Gln254Gln). We also
found p.Arg412Cys, previously described by Aceto et al.
[46] and predicted by Polyphen as "possibly damaging".
Neither of these variants were found in healthy controls
when genotyping 500 chromosomes. It is quite remarka-
ble though, that two of these previously not reported var-
iants (p.Tyr90Cys and p.Arg170Trp), predicted as
"probably damaging", were both found in CAT-22. This
patient displayed multiple adenomas (50–60) and CRC at
53 years, but had no family history of polyposis. However,
further studies are necessary to assess if these two variants
are indeed deleterious.

Conclusion
Our mutation detection rate for the APC gene (39%) is
consistent with previous reports. Using standard methods
of mutation analysis, such as sequencing, 11% of the clas-
sical FAP patients would not have been detected, so anal-
ysis of large rearrangements of the APC gene is strongly
recommended. A genotype-phenotype correlation was
found for most of the APC identified mutations, although
the inter-family phenotypic variability observed would
suggest the existence of genetic and/or environmental
modifiers.

Besides, our data regarding the incidence of the 1309 and
1061 deletions in APC could indicate that in Galician
patients the frequency of these two hotspot mutations is
underrepresented. In our study, codon 1061 proved to be
significantly different from the Catalonian and other Cau-
casian populations. We believe this might be due to the
genetic isolation of the Galician population.

Biallelic germline mutations in MUTYH accounted for
24% of the families analysed, all of which displayed an
attenuated polyposis phenotype and a CRC onset 10 years
later than FAP. It was observed that a family history of ver-
tical transmission of CRC did not rule out the possibility
of biallelic MUTYH mutations.

In short, the overall results resemble those previously
published and confirm that large rearrangements repre-
sent an important percentage of APC germline mutations.
The lower frequency observed for the two hotspots of APC
in Galician families has probably lead to a higher hetero-
geneity of APC mutations in this population. MUTYH
analysis is also recommended for all APC-negative fami-
lies even if a recessive inheritance is not confirmed. From
a molecular point of view, these findings altogether have

important implications for the design of mutation detec-
tion strategies, especially in Galician FAP families.
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